Data processing softwares and formats (partly written in french)

o Connection between the functions of SIR and those of CLASS (stage P. Hoegstoel 96, in french).

e Documentation about FITS format (in french, includes US links).
CFITS cookbook: How to read FITS file with the CFITS program (from the Grenoble package).

e The CLASS software is available on the nanrt5 Nani; 2ay computer:
Since the CFITS program of this version does not work, please try the old Meudon mesiog computer version
with the following setup:
alias -x class="/recqdata/martin/osf1/bin/class"
alias -x cfits="/recqdata/martin/osf1/bin/cfits" (etc...)
export GAG_ROOT=/recqdata/martin
export GAG_SYS=osfl

o stokes parameters CLASS procedure to compute the Stokes parameters, linear polarisation parameter and PA :
under the CLASS prompt, call the procedure stokes.class (@stokes, version FEB 2008).

o CLASS abbreviations : under the CLASS prompt, call the procedure abb.class (@abb, version April 2002).

e NCDRT : Nancay Continuum Data Reduction Tool, M. Roos Serote's software developed for reducing the
continuum data obtained with the NRT.

October 19th, 2007. P. Colom, J.-M. Martin
Last modification: 26 March 2008. P. Colom

https://www.obs-nancay.fr/wp-content/uploads/2026/01/stokes.zip
https://www.obs-nancay.fr/wp-content/uploads/2026/01/abb.zip
http://astro.oal.ul.pt/~roos/

AOUT 96.

Help de comparaison des instructions SIR et CLASS

Systeme Interactif de Reduction

Continuum and Line Analysis Single-dish Software

Preliminaires

Ce document reprend l'ordre alphabetique de 1l'aide
de SIR et pour chaque commande donne un equivalent
dans CLASS.

Il est bases sur les version suivantes

SIC vV 8.0 du 15-DEC-94
LAS V 4.1-0 du 08-APR-88
SIR V 05/95 du 29-MAY-95

La plupart des commandes arithmetiques, des fonctions de
langages, comme les boucles, les tests logiques... sont
en fait des commandes SIC.

Les fonctions de plus haut niveau (typiquement les manipulations
de spectres ou de headers) sont des commandes CLASS.

Ces deux modules etant intimement lies (avec d'autres en plus),
il n'est pas a la charge de l'utilisateur de preciser si il
s'agit d'une commande CLASS ou SIC ou autre, sauf en cas
d'ambiguite, ce qui est de suite signale par 1l'interpreteur

de commandes.

Dans ce qui va suivre, il peut arriver qu'un paragraphe (la
description d'une commande) fasse allusion a une autre commande.
Dans ce cas il est ecrit COM1 => COM2 ou COM1l represente la
commande SIR et COM2 la commande equivalente CLASS.

Tous les paragraphes sont construits de la maniere suivante
COMMANDE SIR

COMMANDE CLASS : commentaires
(eventuellement un exemple)

la commande Class est remplace par "inexistant" si il n'y a pas
d'equivalent au sens strict du terme.

Les instructions LET sont facultatives et sont precisees pour bien
montrer qu'il s'agit d'une affectation.

ABSO
ABS : Retourne la valeur absolue d'un argument.
ex : DEFINE INTEGER A
LET A = ABS(-10)
On ne trouvera pas d'equivalent a ABSO* ou tout autre
manipulation sur les tableaux 1..8 specifiques a SIR.
Cela restera vrai pour toutes les commandes les manipulant.
ADDI
"+" : Cette fonction est remplace par l'operateur mathematique
"+" et donc est plus naturel d'emploi.
ex : DEFINE INTEGER A B
LET A = 10
LET B = 20
LET A = (A+B)

SIR autorise la concatenation de chaines avec ADDI.
Sous CLASS, la concatenation s'effectue de la maniere
suivante

ex : DEFINE CHARACTER CHAINE1*5 '*5, *6, *11

DEFINE CHARACTER CHAINE2*6 !representent les
dEFINE CHARACTER CHAINE3*11 !longueurs des chaines
LET CHAINE3 = 'CHAINE1l''CHAINE2'

On prendra soin de declarer une variable cible suffisamment
grande en taille.

AREA

AREA
AREA est une variable globale du header dont la valeur
peut etre editee a l'aide de EXAMINE ou SAY. Cette variable
est modifiee en fonction des operations qui sont effectuees
sur les donnees. Par exemple, a 1l'issue d'une soustraction
de ligne de base, AREA va prendre la valeur de l'aire non
masquee sous la ligne de base.
La maniere "classique" de faire un calcul d'aire est de charger
un spectre (ou une moyenne), de definir un masque, de soustraire
une ligne de base, definir le nombre de gaussiennes a fitter, et
rechercher ces gaussiennes.

ex : FILE IN toto.nan
FIND/ALL
SUM
DEVICE XAUTO WHITE
PLOT
SET WINDOW ! voir CLIP => SET MASK
! => SET WINDOW
BASE n/PLOT ! n = degre du polynome
LINES 2 ! pour 2 gaussiennes
GAUSS ! recherche interactive
! a 1'aide du curseur.
! le click souris marche !
FIT ! affiche le resultat

Les parametres tels que l'aire sont alors affiches a l1l'ecran.

ASKN

LET : La saisie d'une valeur numerique ou alphanumerique se
programme par l'instruction LET sans utiliser de valeur
derriere.

ex : LET x = 10 initialise a 10 la variable x.
LET x invite l'utilisateur a entrer
la valeur de x et fourni l'affichage
suivant a l'ecran : x =
Un retour chariot sans entrer une valeur ou la saisie
d'une valeur incoherente vis a vis du type de variable
provoque une erreur et la pause caracteristique de
tout probleme dans 1l'execution d'une procedure CLASS.

L'option SYNTAX | FIXED | FREE | permet de ne pas preciser
(dans le cas de FREE) la commande LET. Ainsi l'instruction
x = 10 sera valide. FREE est l'option par defaut.

Dans les versions recentes de SIC, vous pourrez trouver
1'option /RANGE ou /CHOICE permettant de controler
immediatement la validite de la valeur saisie.

BASE

BASE : La soustraction d'une ligne de base fonctionne a peu pres
de la meme maniere dans les deux systemes.
CLASS charge un spectre dans un tableau R. Lors d'un appel
a BASE, ce tableau est copie dans un tableau memoire T. La
soustraction de la ligne de base est alors appliquee sur le
tableau R.

ex : FILE IN toto.nan
FIND
GET FIRST
SET WINDOW ! definition interactive d'un masque
BASE 4/PLOT ! degre 4 et imprimee sur le graphique

le degre du polynome a soustraire peut aussi etre defini par
SET BASE n. Par defaut n = 1.

L'utilisation de masques (comme SETM de SIR) fait intervenir

dans CLASS la notion de fenetre (WINDOW) .
Voir SETM => SET WINDOW

BRAL

inexistant
ne pas chercher l'equivalent d'un goto ou tout autre
branchement inconditionnel comme BRAL dans CLASS puisque
cela n'existe pas ! Dans un souci de lisibilite, de
maintenance et de fiabilite de programmation, les
structures de programme qui ont ete inclue dans SIC (et
donc dans CLASS) sont les IF..THEN..ELSE..ENDIF, FOR..NEXT
et FOR/WHILE..NEXT que l'on retrouve dans tous les langages
de programmation classique.
Cela necessite de penser ses procedures differemment.
Le BRAL n'est absolument pas necessaire sir 1l'on agence bien
les differentes etapes de son programme. Les boucles WHILE,
associees a des tests IF, permet de venir a bout de n'importe
quel algorithme du 20eme siecle. (Mis a part les besoins
incontournables de la recursivite).

ex : Imaginons la situation SIR suivante

1: ASKN "Entrer O ou 1 :", A
BREQ 2, A
COMP 1, A
BREQ 3
BRAL 1
2: MESS Vous avez entre 0
3: MESS Vous avez entre 1

Cet exemple va boucler tant que l'utilisateur
n'aura pas entre effectivement 0 ou 1 et sauter
au paragraphe 2 ou 3 selon la valeur entree.

L'equivalent en CLASS s'ecrira

DEFINE INTEGER VALEUR

LET VALEUR

FOR/WHILE VALEUR.NE.O.AND.VALEUR.NE.1
LET VALEUR

NEXT

IF VALEUR.EQ.O THEN
SAY "Vous avez entre 0"

ELSE
SAY "Vous avez entre 1"

END IF

Certes, vous aurez tape 10 lignes de code au lieu

de 7, mais la lisibilite sera nettement meilleure,

et la comprehension ulterieure du programme s'en
resentira. Seuls le temps et la pratique permettent
de se convaincre de l'interet de ce genre de syntaxe.

Pour tester la validite d'une reponse, voir aussi
la derniere remarque de ASKN => LET.

BREA

PAUSE :Il1 n'existe malheureusement pas d'equivalent a la
commande BREAK de SIR. Celle qui s'en rapproche le
plus est l'instruction PAUSE qui met en suspens
l'execution de la procedure Jjusqu'a ce que
l'utilisateur entre (pour continue) puis
ou bien " puis pour quitter.

ex PAUSE "Ceci est une pause. pour continuer"

BREQ

inexistant
Comme pour BRAL, on ne trouvera pas d'equivalent dans SIC.
I1 faut structurer son programme de maniere a n'utiliser que
des boucles FOR..NEXT, FOR/WHILE..NEXT et des tests IF..ENDIF
Ne pas chercher a faire IF condition THEN GOTO puisque le
goto n'existe pas. Ce qui aurait du figurer dans le paragraphe
du goto devra tout simplement etre mis a la suite du IF.
ELSE et/ou l'imbrication de plusieurs IF permet d'avoir
ainsi plusieurs cas possibles.
Les tests logiques possibles sont detaille ci-dessous.

BRGE

inexistant
Meme remarque que pour BRAL.
en ce guli concerne les tests logiques destinees a effectuer
telle ou telle operation en fonction du resultat, SIC offre les
fonctions suivantes
.OR. ou logique
.AND. et logique

.NOT. non logique
>

.GT.
LT. <
GE. >=
LE. <=
NE. <>
EQ. =
Les . sont a respecter dans la syntaxe.

voir exemple de BRAL=>inexistant

BRGT
inexistant : idem ci-dessus
BRLE
inexistant : idem ci-dessus
BRLT
inexistant : idem ci-dessus
BRNE
inexistant : idem ci-dessus
CALL
@ l'appel d'une procedure a l'interieur d'une

autre procedure est possible dans CLASS,

tant que l'on ne fait pas d'appel recursif,

c'est a dire appeler une procedure a 1'interieur

d'elle meme.

ex : Si une procedure A doit appeler une procedure
B, on tapera au prompt /LAS de CLASS

@ A pour appeler la procedure principale.

(on peut se creer des racourcis ou alias par
la commande SYMBOL)

le corps de la procedure A fera de la meme
maniere a B : @ B

Un des avantages majeur de SIC, est gqu-il permet de
passer en argument des parametres aux fonctions appelees.
Pour reprendre l'exemple du paragraphe BRAL => inexistant,
imaginons que nous voulions remplacer le IF..THEN..ELSE
par une procedure independante. Nous ecrivons alors

DEFINE INTEGER VALEUR

LET VALEUR

FOR/WHILE VALEUR.NE.O.AND.VALEUR.NE.1
LET VALEUR

NEXT

@TEST VALEUR

La procedure TEST s'ecrira donc
! procedure TEST.CLASS

DEFINE INTEGER VALEUR RECU
LET VALEUR RECU = &1
IF VALEUR RECU.EQ.O THEN

SAY "Vous avez entre 0"
ELSE

SAY "Vous avez entre 1"
END IF

RETURN

Dans la premiere procedure, nous appelons @ TEST en lui
donnant comme argument la variable VALEUR.

La procedure destination reconnait les arguments qui lui
sont donnes grace a leur position. Il faut donc, dans

le cas d'arguments multiples, qu'il y ai adequation entre
la position des arguments donnes et celle des arguments
attendus. Le nombre maximum d'argument est 8. Leurs noms
, dans la procedures destination sont &1, &2, &3...

Je conseillerai vivement de recopier de suite la valeur
dans une variable plutot que de travailler directement sur
&x, ce qui d'ailleur n'est pas toujours possible.

Les procedures ne sont pas des fonctions et le passage
d'arguments est unilateral c'est a dire g'une procedure
ne peut pas donner de parametre a sa procedure appelante.

On peut contourner ce probleme en utilisant des variables
globales
Si 1'on declare dans une procedure

DEFINE REAL TRUC/GLOBAL, cette variable sera connu de toutes
les procedures appelees, quelque soit leur niveau d'
imbrication. Ainsi si une procedure B appelee par @B dans
une procedure A fait LET TRUC = TRUC+1, ce resultat sera
connue de la procedure appelante A puisque la variable est
globale.

La difference avec une variable dite locale dans une procedure,
c'est que cette derniere est detruite (enlevee de la memoire)
lorsque la procedure se finit. Exactement comme gquand on
effectue un DELETE/VARIABLE nom variable.

CHPY
inexistant :
voir HARD => HARDCOPY
CIDX
FIND Lorsque 1l'on cherche des spectres a partir d'un certain
nombre de criteres (voir CRIT => SET), on cree le resultat
de la requete a partir de 1l'instruction FIND. Un tableau
appele INDEX contient tous les numeros de spectres issus
de la recherche. INDEX est un tableau comme tous les autres
qui peut se manipuler element par element : INDEX[1],
INDEX[10], INDEX[i].
Le nombre d'elements trouves, ce qui correspond aussi a la
taille du tableau INDEX est donne par la variable globale
FOUND.
FIND/ALL travaille de la meme maniere que FIND en ommettant
le critere de selection sur les numero de version.
Si aucun critere de version n'a ete defini, FIND et FIND/ALL
retourneront le meme resultat d'INDEX.
LIST IN affiche a l'ecran la liste des spectres contenus
dans le fichier FILE IN sans tenir compte des criteres
de recherche.
voir aussi CRIT => SET
MCRI => SET
CLEA
inexistant
Cependant, on peut soit utiliser une boucle FOR pour
reinitialiser le tableau. En fait la boucle est implicite
puisqu'il suffit d'ecrire
DEFINE INTEGER TAB[10] ! tableau de 10 entiers
LET TAB[i] = 0 ! cela marche aussi pour plusieurs
! dimensions
ON peut aussi effacer la variable et la recreer
DELETE/VARIABLE TAB
DEFINE INTEGER TAB[10]
mais la lere solution est bien meilleur car il n'y a qu'une
seule declaration.
CLIP
SET MASK :
SET WINDOW

toutes les operations de masquage de points passent par SET
WINDOW ou SET MASK.

SET WINDOW est utiliser pour masquer des points dans le cas
d'une recherche de ligne de base.
On peut definir plusieurs fenetres

SET WINDOW ptll ptl2 pt2l pt22

Les points definis dans la fenetre sont masques.

Ce parametrage peut s'effectuer interactivement et graphiquement
par le biais d'un curseur. (SET CURSOR ON) .

Dans ce cas des touches sont predefinies car les boutons de

la souris ne sont pas geres.

N new boudary

C cancel last entry
H help

E exit

SHOW WINDOW permet d'afficher les fenetres definies.
DRAW WINDOW les affiches en surimpression du spectre.

SET MASK cache des points pour la recherche d'une gaussienne.

Memes remarques pour SET CURSOR ON
les touches predefinies
SHOW MASK
DRAW MASK
CLRM
SET MASK :
SET WINDOW
Pour effacer un masque precedemment defini, il faut
executer la commande SET WINDOW (ou SET MASK) sans
parametre et taper immediatement E pour sortir de la
saisie interactive.
Utiliser SET WINDOW O O reduit le masque a un intervalle
ridicule mais ne le detruit pas vraiment.
ATTENTION : CLEAR WINDOW existe mais n'a rien a voir avec
la notion de masque et efface la fenetre graphique de 1l'ecran
ainsi que tout ce qui s'y rapporte.
COMP
inexistant
Il n'y a pas d'operateur de comparaison au sens de COMP.
Cependant, on trouve tous les operateurs logigques necessaires.
Ceux-ci sont donnes au paragraphe BRGE => inexistant.
Associes a la fonction IF, ils rendent le meme service.
CORR
inexistant
COSR
COS
COSH cette fonction retourne le cosinus (ou cosinus hyperbolique)
de la valeur qui lui est donne en argument.
ex : DEFINE REAL A B
LET A = 3.14
LET B = COS(A) ! retournera -1
Les arguments doivent etres donnees en radians.
La constante PI est definie en globale pour d'eventuelles
conversions.
CRIT
SET Pour definir un ou plusieurs criteres de recherche, on

CURS

impose a l'aide de la fonction SET des valeurs a un certain
nombre de rubriques du header des spectres.

ex si 1'on recherche tous les spectres dont le
numero de version est 2 on pourra taper
SET NUMBER *2

* faisant office de "joker" et remplacant

n'importe quel caractere.

La variable VERSION existe et peut etre interrogee
grace a EXAMINE mais ne peut pas faire 1l'objet

d'un SET particulier.

On peut effectuer un SET sur la majorite des rubriques
du header.

SET DEFAULT permet d'annuler tous les criteres definis.
Une instruction supplementaire, IGNORE, permet d'isoler
des spectres qui ne seront jamais selectionnes quelque
soient les criteres definis par SET.

voir aussi CIDX => FIND
MCRI => SET

SET CURSOR ON
rend visible le curseur en vue de son utilisation sur
la fenetre graphique.
voir aussi SETM => SET WINDOW
=> SET MASK

DBUG

inexistant
cette option de debugage peut etre remplace par l'affichage
de message et de contenus de variables judicieusement
places.

DEFI

inexistant :

Les 8 tableaux predefinis de SIR n'existent pas dans CLASS,

cependant, on peut declarer autant de tableaux que 1l'on veut

par DEFINE type nom var [dim]

ou type est le type des elements contenus dans le tableau
nom var le nom du tableau
dim sa dimension (unique ou multiple)

dans ce cas, l'intervalle d'utilisation de ce tableau

est sa dimension.

voir aussi LOAD => GET

DIVI

ll/" .

"|" : La fonction de division est remplacee par 1l'operateur
mathematique qui y est habituellement associe.
1'operateur "/" etant egalement utilise pour certaines
options comme LET.../WHERE, SIC offre la possibilite
d'effectuer une division a l'aide du symbol "|[|"
ex : DEFINE INTEGER A

DEFINE INTEGER B

DEFINE REAL C

LET C = (A|B)
EINT

INT : 1INT retourne la partie entiere de l'argument qui lui est
donne.
ex : DEFINE REAL A

DEFINE INTEGER B
LET A = 4.567
LET B = INT(A)
B prend la valeur 4
A noter qu'il existe dans CLASS une fonction qui arrondie
une valeur a l'entier le plus proche : NINT.
si 1l'on ecrit :
LET B = NINT(A)
B prendra la valeur 5
ENDL
NEXT : la fin d'une boucle, dans CLASS, est marquee par l'instruction

NEXT, qu'il s'agisse d'une boucle FOR...NEXT ou d'une boucle
FOR/WHILE. . .NEXT.

rem : les variables compteur des boucles FOR (I) sont declares
implicitement.
ex : DEFINE INTEGER TAB[10]

FOR I 1 TO 10
EXAMINE TAB[I]
NEXT

ex : DEFINE INTEGER TAB[10]
DEFINE INTEGER COMPTEUR
LET COMPTEUR = 10
FOR/WHILE (COMPTEUR.GT.O)
EXAMINE TAB[I]
LET COMPTEUR = COMPTEUR-1

NEXT

ENTE
LET : Il n'y a pas d'equivalent a cette fonction dans le sens ou
le vecteur @ de SIR n'existe pas. Cependant, une fois que
l'on a declare un tableau (DEFINE) on peut initialiser
chacun de ses elements a l'aide de la fonction LET.
ex : DEFINE INTEGER TAB[10]
LET TAB[3] = 5
LET TAB[7] = 4
si 1'on veut que la valeur soit definie a 1l'execution,
il suffit de ne pas mettre de valeur.
LET TAB[3]
LET TAB[7]
EVAL
inexistant
1'evaluation d'une expression arithmetique composee ne
necessite pas, dans CLASS, d'instruction particuliere.
ex : DEFINE REAL A
LET A = MIN((EXP(COS(3.14))), (EXP(SIN(3.14))))
SIC propose a peu pres toutes les fonctions classiques
fonctions a 1 argument :
ABS, ACOS, ASIN, ATAN, COS, COSH, EXP, INT, LOG, LOG1O0,
NINT, SIN, SINH, SQRT, TAN, TANH
fonctions a 2 arguments :
ATAN2, MAX, MIN, MOD, SIGN
operateurs
+, -, *r /Oulr ** ou ”
Les operations sur dates gregoriennes ou Jjuliennes
ne sont pas predefinies dans CLASS mais peuvent
reprogrammees comme une procedure ou comme une
fonction. En effet, l'utilisateur peut definir ses
propre fonctions a l'aide de DEFINE FUNCTION
ainsi l'exemple ci-dessus pourrai devenir
DEFINE REAL A
DEFINE REAL ARGl ARG2
DEFINE FUNCTION TRUC(P1, P2) MIN((EXP(COS(P1l))), (EXP(SIN(P2))))
LET ARGl = 3.14
LET ARG2 = 3.14
LET A = TRUC (ARG1l, ARG2)
EXPN
EXP : Cette fonction retourne l'exponentiel de son argument.
ex : DEFINE INTEGER A
LET A =1
SAY 'EXP(A)' affichera 2.718
EXTR
inexistant :
Cette fonction qui dans SIR fournie les indices et valeurs
du minimum et/ou du maximum d'un tableau est facilement
reprogrammable a l'aide d'une boucle parcourant un tableau.
FEFTA
FFT : 1l'instruction FFT lance le calcul de la transformee de

Fourier sur le tableau R et trace le resultat dans la
fenetre graphique. Le contenu du tableau R n'est pas
affecte par ce calcul.

On peut definir des zones a effacer en utilisant le
curseur comme pour definir une fenetre. E (exit) permet
de sortir de la fenetre graphique.

FFT/REMOVE.

FOLD

FOLD : La commande FOLD

GAUS

GAUSS :fit d'une gausienne sur un spectre. Il faut avoir prealablement
defini un masque et soustrait une ligne de base.
l'instruction LINES permet de definir certains parametres comme
le nombre de gaussiennes a fitter.

Une fois ces elements definis, il suffit de taper GAUSS puis FIT
pour visualiser dans la fenetre graphique.

METHOD GAUSS
SHELL
NH3 (n, n)
HF'S
CONTINUUM

permet de fixer une methode de fit.
voir BASE => BASE

voir CLIP => SET MASK
=> SET WINDOW

GETF
inexistant
En ce qui concerne les exportations et importations de fichiers,
il faut s'orienter vers la commande GREG. +fits (CFITS)
GETM
SHOW MASK

SHOW WINDOW
ces instructions permettent d'afficher les masques et fenetres
definies par SET MASK et SET WINDOW.

HARD
HARDCOPY
Fournie un fichier postscript de l'ecran graphique.
cette fonction propose differentes options concernant
l'orientation de la feuille, le peripherique de sortie...
ex : HARDCOPY nom_ fic /DEVICE PS FAST ! (ou GREY ou COLOR)
L'option /PLOT permet de faire une sortie immediate.
HEAD
HEADER
MODIFY :
TAG : HEADER affiche le contenu du header du spectre courant.
MODIFY et TAG permettent d'intervenir sur le contenu.
TAG est juste destine a renseigner sur la qualite de
l'observation. C'est une valeur entiere de 0 a 9.
MODIFY permet de changer les principaux parametres du
header
frequence, offset, canal de ref, nom de raie,
vitesse au repos, resolution...
La syntaxe est a peu pres toujours la meme
MODIFY nom rubrique valeur
HELP

HELP : Aide "en ligne" de CLASS comprenant principalement la
description des instructions SIC, LAS, ANALYSE et GTVL.
Le manuel de reference reste cependant indispensable
pour un bon nombre de details.

HIST

inexistant
Il n'y a pas la possibilite, sauf creation d'une
procedure particuliere, de construire 1l'histogramme
d'un tableau.

SET PLOT H permet de tracer un spectre sous forme
d'histogramme. Cependant, il ne s'agit pas de
l'histogramme du spectre qui doit fournir une
quantification du nombre de canaux pour une temperature

donnee. (comme c'est le cas dans SIR)
INDV

inexistant
Pour obtenir la vitesse correspondant a un indice donne
, 11 faut interroger le tableau RX.
ex : SAY 'RX[30]' affichera la vitesse du point

d'indice 30.
Pour la fonction reciproque il faut programmer une
fonction qui recherche la vitesse souhaitee et qui
retourne 1l'indice correspondant.
INTE

ACCUMULATE :

SUM : ACCUMULATE permet d'integrer les 2 spectres des tableaux
R et T, le resultat etant conserve dans R. Cette integration
est ponderee en tenant compte du poids de chacun des spectres.
Si les spectres ne coincident pas dans leur position et
dans leur calibration (SET MATCH et SET CALIBRATION), un
message d'alerte est affiche.

SUM effectue l'integration de 1'ensemble des spectres
contenus dans le tableau INDEX (voir CRIT => SET ou
CIDX => FIND). Il vy a egalement verification de la
coherence entre les calibrations et les positions.

INTV

ACCUMULATE

SUM : Voir ci-dessus.

INVM

inexistant : Il n'y a pas de methode prevue pour prendre le

complement des masques ou fenetres definies.
IPOL
inexistant
LCRI

SHOW : La fonction SHOW est assez generale pour l'affichage
d'information. Associee a un champ particulier du HEADER,
elle renseigne sur son contenu. L'option ALL (SHOW ALL)
fourni la liste des parametres definis par 1l'instruction
SET. Une * doit signifier qu'il n'y a pas de contraintes
particulieres imposes sur un champs du header pour 1la
recherche par FIND.

LIST

TYPE : La commande TYPE utilisee seule affiche le contenu de la
pile des commandes entrees interactivement.

ex Si depuis le debut de la session, l'utilisateur

a tape :

FILE IN toto.nan
FIND/ALL

DEVICE XAUTO WHITE
@ procl.class
CLEAR WIN

TYPE fournira la liste de toutes ces instructions,
sauf celles qui seront issues de l'execution de
procl.class.

TYPE nom proc affiche le code de la procedure nom proc a
l'ecran. L'extension du fichier peut etre omis si

celui ci est .class. Si ce n'est pas le cas, il faut

la preciser.

ex : TYPE ma_proc ! si le fichier est ma proc.class
TYPE mine too.txt ! si pas .class

ATTENTION : l'instruction LIST existe dans CLASS mais sert
a afficher la liste des spectres de 1'INDEX issu de la
recherche sur criteres par FIND.

LOAD
GET : Il n'y a pas d'equivalent des 8 tableaux predefinis de SIR.

La structure de donnees qui s'en rapproche le est le tableau
defini automatiquement lors du chargement d'un spectre.

Lors de cette operation, un tableau RY conserve les valeurs

des ordonnees, RX celles des abscisses et toutes les donnees

du header sont egalement stockees en memoire. On peut memoriser
le spectre et son header dans une structure de copie par

ex : FILE IN TOTO.NAN ! fichier de spectres

FIND/ALL

GET FIRST

MEMORIZE une memoire
GET NEXT B
MEMORIZE deux memoires
GET NEXT o

! a ce moment, c'est le 3eme spectre de TOTO.NAN qui
! est en memoire, mais on peut rappeler les deux
! premiers en faisant

RETRIEVE une memoire

! le 3eme est alors place dans une memoire tampon
TX, TY et "T"header. on peut le remettre dans la
! memoire R par SWAP

RETRIEVE deux memoires

! dans ce cas, le 2eme spectre est mis dans R

! le ler qui etait dans R passe dans T

! et le 3eme aui etait dans T disparait puisque
! on ne 1'a pas memorise.

LOGN

LOG10
LOG : Retourne le logarithme (ou le logarithme decimal) de
1'argument qui lui est donne.

ex SAY 'LOG(10)' ! affiche 2.3
SAY 'LOG10(10)' ! affiche 1

voir aussi EVAL => inexistant
LOOK

STAMP :La visualisation le plusieurs spectres sur la fenetre
graphique peut etre obtenu par STAMP.
cette fonction exige 2 arguments qui representent le
nombre de spectres horizontalement et verticalement.
On peut preciser 1l'option /NUMBER pour faire apparaitre
dans le coin superieur gauche de chaque fenetre le numero
de spectre concerne.

ex FILE IN toto.nan
FIND/ALL
DEVICE XAUTO WHITE
STAMP 4 5 /NUMBER

affichera 20 spectres avec leur numero respectif, sous
forme d'un tableau de 4 colonnes de 5 spectres.

On peut afficher plusieurs spectres a des emplacements
determines par l'utilisateur a l'aide de SET BOX LOCATION.
Cette instruction fonctionne de la maniere suivante

ex SET BOX LOCATION 3 10 3 10
BOX
SPECTRUM

defini une boite dont le coin inferieur gauche est a 3
centimetres des bords de la feuille et le coin superieur
droit a 10 centimetres. Le point de coordonnee 0,0 etant
le coin inferieur gauche de la feuille d'affichage. Il
est sous entendu que la fenetre graphique represente une

LOOP

FOR

MCRI

SET

MESS

SAY

feuille de format 21*29.7 d'ou la definition en cm des
arguments donnees a la fonction.

format general : SET BOX LOCATION X1 X2 Y1 Y2 avec

X1 Y1 les coordonnees du coin inf. gauche et

X2 Y2 du coin sup. droit de la boite a
afficher.

BOX affiche cette boite.
SPECTRUM insere dans cette boite le spectre courant.

TITLE n'est pas encore au point (V 4.1 88). Il s'affiche
toujour en haut de la fenetre graphique et non pas au dessus
de la boite.

Pour effacer la derniere operation graphique, utiliser
CLEAR SEGMENT puis ZOOM REFRESH.

Les boucles LOOP de SIR ont ete remplacees par des
structures plus evolues comme FOR...NEXT et FOR/WHILE...NEXT.

La boucle FOR...NEXT est une boucle a compteur d'iteration.

ex FOR I 1 TO 50

NEXT

Cette boucle va tourner jusqu'a ce que I prenne la valeur 51.
Les variables compteur de ce genre de boucle n'ont pas besoin
d'etre declarees. Elles le sont implicitement par 1l'interpreteur.

La boucle FOR/WHILE...NEXT est une boucle a interruption
conditionnelle suivant un test logique.

ex DEFINE CHARACTER REPONSE*3

LET REPONSE
FOR/WHILE (REPONSE.EQ."O".OR.REPONSE.EQ."OUI")

suite d'instruction...

SAY " Recommencer le traitement ? (O/N)"
LET REPONSE
NEXT

tant que la valeur de REPONSE est O ou OUI,
les traitements inclus dans la boucle seront effectues.

Pour ajouter un nouveau critere de selection (voir CRIT => SET)
, ou pour modifier un critere deja defini, il faut utiliser
1'instruction SET.

ex : SET NUMBER 1000 2000
SET OBSERVED 1-JAN-1996 31-JAN-1996
FIND

trouve tous les spectres dont le numero est compris entre
1000 et 2000 et dont 1l'observation a ete effectuee entre
le ler et le 31 janvier 1996.

SET OBSERVED 1-JAN-1996 31-FEB-1996

SET LINE HI 21-cm

FIND

effectue une nouvelle recherche avec un intervalle de date
plus etendu et une nouvelle contrainte sur le nom de la raie.

L'affichage a l'ecran d'un message s'obtient en utilisant
SAY de deux manieres possibles

Afficher du texte
ex : SAY "Ceci est un message"

Afficher le contenu de variables

ex : DEFINE INTEGER A
GET FIRST
SAY 'A''RY[3]'" ! affiche le contenu de A et
! et la valeur du canal 3 du ler spectre.

On peut combiner les deux possibilites

ex : SAY "le contenu de A est :"'A'
MOVE
LET
"= MOVE utilise comme operateur d'affectation, peut etre remplace
par l'operateur mathematique classique precede eventuellement
de l'instruction LET.
ex : DEFINE INTEGER A B
LET A =B ! met le contenu de B dans A
Cette affectation est la meme quelque soit le type de
donnee : entiers, reels, caracteres, tableaux, booleens...
L'affectation globale d'un tableau est possible si leurs
tailles sont identiques. On peut egalement affecter un
tableau d'entiers a un tableau de reels ou vice versa.
Dans ce dernier cas, les valeurs seront tronquees a leur
partie entiere.
ex : DEFINE INTEGER TABI1[5]
DEFINE INTEGER TAB2[5]
DEFINE REAL TAB3[5]
DEFINE INTEGER TAB4[9]
TAB1 = TAB2
TAB2 = TAB3
sont des affectations valides
TAB3 TAB4
ne l'est pas car il n'y a pas coherence de taille.
MULT
man I1 s'agit de l'operateur classique de multiplication.
on peut multiplier une variable unique ou multiplier
un tableau en une seule instruction.
ex DEFINE INTEGER TABI1[3]
DEFINE REAL TAB2[3]
(ici aussi LET est optionnel)
LET TABR1 = TAB1*2
LET TAB2 = TAB2*TABl
sont des affectations wvalides
On retrouve la contrainte de taille exprimee dans
le paragraphe precedent.
PFIT
inexistant : pas de fonction pour avoir les coefficients d'un
polynome qui fitte sur un spectre.
Voir BASE => BASE.
PLOT
HARDCOPY

Fournie un fichier postscript de l'ecran graphique.
cette fonction propose differentes options concernant
l'orientation de la feuille, le peripherique de sortie...

C'est cette fonction aui permet dans CLASS d'effectuer
une sortie vers une table tracante en utilisant 1l'option
/PLOT.

ATTENTION : 1l'instruction PLOT existe dans CLASS mais sert
a tracer le spectre courant a l'ecran, ainsi que son titre,
et ses axes de coordonnees.

PRIN

SIC OUTPUT
I1 ne s'agit pas tout a fait d'un equivalent puisque SIC
OUTPUT redirige les affichages SAY (voir MESS => SAY) dans
un fichier de sortie.
Ce dernier est ecrit uniquement lorsque l'on ferme le
fichier de sortie par 1l'instruction SIC OUTPUT.
Les affichages a l'ecran sont conserves.

ex : SAY "ce message s'affiche a l'ecran"
SIC OUTPUT sortie.txt
SAY "ce message sera a l'ecran et bientot dans le fichier"
SIC OUTPUT ! fermeture du fichier
SAY "Le second message est maintenant dans le fichier"

ATTENTION : 1l'instruction PRIN existe dans CLASS mais sert
a rediriger vers l'ecran ou vers un fichier un certain
nombre de parametres FIT, AREA, CHANNEL...

PUTFE

GREG : On peut exporter un spectre dans un fichier binaire avec la
commande GREG. Il n'est pas possible de relire ces fichiers
avec CLASS. (il n'y a donc pas d'equivalent de GETF).

RDSY
" @ nw
Les symboles (ou alias) sont une propriete du langage SIC et
donc independant de CLASS. Si 1l'on souhaite conserver une
sauvegarde de plusieurs symboles, cela doit se faire dans une
procedure separee qui sera rappelee pour initialiser ces
alias. On ne peut les sauvegarder dans un fichier resultat
comme c'est le cas dans SIR.
La sauvegarde sera effectuee par SAVE qui ecriera un .CLASS.
SYMBOL donne la liste des symboles.
SYMBOL X donne l'equivalent dy symbole X
SYMBOL X "equivalent" defini un nouveau symbole.
READ
GET : Permet de charger un spectre dans le tableau R. Ce spectre
est obligatoirement issu du fichier defini comme fichier
d'entree a l'aide de l'instruction FILE IN. La destination
du spectre sera le tableau R, l'ancien contenu de ce tableau
etant recopie dans le tableau T. Si on lit un nouveau spectre,
le contenu de T est alors perdu. On peut l'eviter en memorisant
sont contenu a l'aide de MEMORIZE.
ex SET EXTENSION nan
FILE IN toto ! sous entendu toto.nan
FIND/ALL
LIST
GET 1234 ! charge 1234 dans R
GET 1235 ! charge 1235 dans R et 1234 dans T
SWAP ! permute R et T
MEMORIZE savel ! memorise T dans savel
SWAP
GET 1236 ! charge 1236 dans R
RETRIEVE savel ! charge savel dans R
GET sans option charge le ler spectre de la liste
GET FIRST charge le premier
GET NEXT charge le suivant
GET LAST charge le dernier
REGR
inexistant
RESM
" @ "

On ne peut pas sauvegarder les parametres d'un masque
dans les fichiers resultats. Cependant, SAVE permet de
sauvegarder les parametres d'une session CLASS (parametres

etablis par SET) dans une procedure .CLASS.
Cette derniere peut donc etre rappelee par un "@" comme
n'importe quelle procedure.

RETU

RETURN
Cette fonction de retour de procedure peut etre utilisee de la
meme maniere que dans SIR, cependant, etant donne que SIC (et
donc CLASS) propose des structures de programme (boucles et
tests) evolues, on s'arrangera toujours pour avoir un
algorithme qui, quelque soit le devenir des variables, arrive
en fin de procedure avant de terminer son execution.
Une instruction RETURN a la fin d'une procedure aura pour
role de terminer proprement l'algorithme en propageant
une eventuelle erreur a la procedure appelante.

REVE

inexistant
Des lors que 1l'on peut manipuler les tableaux, on peut
reprogrammer ce genre de fonction.

ROTA

inexistant
meme remarque que precedemment.

SAVM

SAVE : Il ne s'agit pas a proprement parle d'un equivalent puisque
le masque n'est pas sauve dans le fichier resultat mais dans
un fichier a part qui est en fait une procedure.

Cette procedure obtenue a l'aide de SAVE sauvegarde non
seulement les masques mais egalement tous les parametres qui
ont ete definis en interactif par SET.

voir RESM => "@"
SCAL

SET MODE
Permet de preciser un intervalle de valeurs pour les
abscisses et/ou les ordonnees pour le trace des spectres.
SET MODE accepte differents arguments

SET MODE X pour preciser l'intervalle des abscisses.

ex : SET MODE X AUTO
SET MODE X 1800 2200

definissent respectivement une echelle d'abscisse automatique
en fonction des valeurs trouvee dans le fichier, une echelle
d'abscisse definie par l'utilisateur.

Les valeurs precisees dans la 2eme forme doivent etre en accord
avec les unites choisies par SET UNIT.

SET MODE Y fonctionne de la meme maniere pour definir
l'intervalle des ordonnees.

SDCL

SYSTEM :
SHELL :
La commande qui calque le SDCL de SIR est SYSTEM. Cette
instruction permet de lancer une commande systeme (DCL si
c'est un environnement VMS, KSHELL par ex. si c'est un
environnement UNIX) .

ex : SYSTEM 1s

./

../

essail.class
essai?2.class
stamp carre.class
timer.class

SYSTEM "ls -n"

-Yw-r—--r-- 1 207 3000 744 Jul 22 15:00 essail.class
—rw-r--r-- 1 207 3000 186 Jul 24 12:46 essai2.class
—rW-r--r—-— 1 207 3000 889 Jul 29 15:37 stamp carre.class
-rw-r--r—- 1 207 3000 882 Jul 24 17:40 timer.class

Les commandes systemes qui necessitent des arguments doivent
etre mises entre guillemets.

rem : On peut lancer ainsi 1l'execution d'un programme externe
(programme C compile par exemple). Le passage d'arguments a
un programme C est eventuellement possible par le biais des
arguments de la ligne de commande, moyennant quelques astuces
et contraintes qui ne seront pas discutes ici.

La commande SHELL bascule vers le prompt du systeme. On peut
y effectuer l'ensemble des commandes systeme habituelles.
Pour revenir a CLASS il faut taper EXIT.

SETM

SET MASK
Defini un intervalle de points a masquer. La fonction autorise
deux argument qui representent le point de depart et le point
d'arrivee du masque.
On peut obtenir 1l'intervalle masque ulterieurement en utilisant
la fonction SHOW MASK. DRAW MASK permet de symboliser le
masque en surrimpression du graphique du spectre. Les valeurs
specifiees pour le masque doivent etre exprimees dans 1l'unite
choisie par SET UNIT.

ex : SET MASK 100 200 ! exprime en canaux
SHOW MASK ! affiche 1'intervalle 100 200
DRAW MASK 0.5 ! "trace" le mask en ordonnee 0.5

Voir aussi CLIP => SET MASK
=> SET WINDOW

SHIF

MODIFY
MODIFY peut etre utilisee avec differentes options.
MODIFY FREQUENCY
MODIFY VELOCITY
MODIFY RECENTER en ce qui concerne le lien avec SHIF.

Cela permet de modifier 1l'echelle des frequences (FREQUENCY),
de modifier le canal de reference (RECENTER ou LET REFERENCE x)
et de recentrer ce canal de reference sur une frequence donnee
(MODIFI VELOCITY) .

L'axe des abscisses n'est modifie en consequence qu'a 1l'issue
d'un nouveau PLOT ou CLEAR puis BOX.

SHOW

PLOT : Trace le spectre dans la fenetre graphique. Cette fenetre doit
avoir ete prealablement definie par DEVICE XAUTO WHITE (pour un
terminal X). Un fois le spectre charge en memoire par GET (voir
LOAD => GET et READ => GET), PLOT affiche successivement une
fenetre vide (CLEAR), la boite determinant les abscisses et les
ordonnees (BOX), le spectre (SPECTRUM) et le titre (TITLE).

Ce trace prend toute la place disponible dans la fenetre.
(voir aussi LOOK => STAMP et les remarques sur SET BOX LOCATION) .

ATTENTION : L'instruction SHOW existe dans CLASS mais sert
a afficher dans la fenetre alphanumerique different parametres
definis par SET (SET MASK, SET NUMBER...)

SHOM

DRAW MASK
On peut representer les intervalles masques par SET MASK ou
par SET WINDOW sur le graphe en effectuant un DRAW MASK ou
un DRAW WINDOW. Il est possible de specifier 1l'ordonnee a
laquelle cet affichage va etre effectue.

voir aussi SETM => SET MASK

SIGM

SIGMA : variable globale du header ??°?°?

SINR

SINH
SIN voir COSR => COSH
=> COS
SMOO
SMOOTH
On retrouve des types de lissage communs a SIR
par defaut, lissage "hanning-smooth"
"boxcar-smoothing"
Le lissage est effectue sur le tableau R, ce dernier etant
prealablement copie dans le tableau T.
SOMM
SUM Integre les spectres dont les numeros sont dans le tableau
INDEX. Ces numeros sont definis par la fonction FIND qui
travaille sur les criteres de recherche qui lui sont imposes
par l'instruction SET.
Voir CRIT => SET et CIDX => FIND
SUM verifie la coherence des positions des spectres ainsi
que 1'homogeneite des calibrations.
SORT
inexistant
I1 faut creer une procedure de tri. Les seuls tris efficaces
du marche etant bases sur des algorithmes recursifs, il sera
difficile d'obtenir un tri rapide a partir d'une procedure
CLASS puisque la recursivite y est interdite.
SQRT
SQRT Meme fonction que dans SIR. Elle retourne la racine carre de
la valeur qui lui est passe en argument.
ex : DEFINE INTEGER A
DEFINE REAL B
LET A = 5
LET B = SQRT (A)
STOP
EXIT Instruction de terminaison du programme CLASS.
SUBT
n-n Pour effectuer une soustraction, utiliser 1l'operateur
mathematique classique "-".
ex : DEFINE INTEGER A
DEFINE REAL B C
LET A = 3
LET B = 2.5
LET C = (A-B)
TYPE
SAY voir MESS => SAY
VISM
SHOW MASK
visualise a l'ecran les masque actuellement definis.
WRIT
WRITE :Ecrit le spectre actuellement dans le tableau R dans le

fichier de sortie (determine par FILE OUT nom fic).

Si le numero du spectre existe deja, une nouvelle version
est cree, laissant intact la version precedente.

Sinon un nouveau spectre est cree dans ce fichier.

L'instruction UPDATE permet d'ecraser un spectre apres
modifications. Le spectre de depart est efface puisque le
nouveau le remplace avec toutefois l'incrementation du
numero de version.

ex FILE BOTH toto.nan ! en entree et en sortie
FIND/ALL
GET FIRST
SET UNIT C
KILL 100
WRITE

ecrit les modifications dans une nouvelle entree du fichier resultat
qui sera placee a la fin.

FILE IN toto.nan

FILE OUT essai.nan NEW
FIND/ALL

GET FIRST

WRITE

si "FIRST" n'existe pas dans essai.nan, i1l sera cree.

FILE BOTH toto.nan
FIND/ALL

GET FIRST

UPDATE

On ecrase le spectre designe par FIRST. A 1l'issue de 1'UPDATE, il
n'y aura pas de spectre en plus dans le fichier mais le numero de
version de "FIRST" aura ete incremente quand meme.

WTSY

inexistant
voir RDSY => inexistant

INSTRUCTIONS CLASS N'AYANT PAS D'EQUIVALENT DANS SIR.

beaucoup d'instructions de CLASS ne possedent pas d'equivalent
sous SIR, soit parce que le concept n'existe pas (par exemple
les nombreuses manipulations graphiques de CLASS) soit parce que
CLASS offre une fonctionnalite de plus dans un domaine tout de
meme present dans SIR.

Les instructions suivantes presentes les "inovations" les plus
importantes.

La notion de type de variables

Chaque variable SIC (et donc CLASS) possede un type c'est a

dire qu'on lui attribue, des sa creation, un domaine d'existance
en terme de valeurs. Une variable de type INTEGER ne pourra
contenir que des valeurs entieres, le type CHARACTER n'acceptera
que des valeurs alphanumeriques, etc...

On rencontre ainsi des INTEGER, CHARACTER, REAL, LOGICAL.

On peut evoquer ici la possibiliter de declarer une fonction

de la meme maniere qu'une variable. Cela a ete discute dans

la comparaison ci-dessus : EVAL => inexistant.

Manipulations graphiques

Ce domaine est plus riche dans CLASS que dans SIR et apporte
donc beaucoup de nouveautes.

DRAW TEXT

Afficher du texte sur un graphique a une position determinee
par ses coordonnees en centimetres.

BOX, SPECTRUM, TITLE
CLEAR SEGMENT:
CHANGE VISIBILITY segname OFF:

On peut afficher uniquement certaines portions d'un graphique,
c'est a dire la fenetre et ses axes gradues, le spectre,

son titre. Ces elements sont appeles par CLASS des segments.
Le segment le dernier afficher peut etre effacer par

CLEAR SEGMENT et ZOOM REFRESH. Cela n'est valable que pour

la derniere operation graphique (principe des piles Last In
First Out). Si 1l'on souhaite effacer un segment gqui n'est pas
le dernier on peut avoir recours a CHANGE VISIBILITY spectrum
OFF puis ZOOM REFRESH.

SET BOX LOCATION

Determine les positions d'une boite destinee a contenir un
spectre. On peut ainsi afficher autant de boites que 1l'on veut
aux emplacements que l'on desire. La commande SPECTRUM dessinera
le spectre dans la derniere boite definie mais rien n'empeche

de reiterer la commande SET BOX LOCATION sur une position deja
existante pour en effacer le spectre ou en mettre un nouveau.

CREATE DIRECTORY

CHANGE DIRECTORY

CREATE WINDOW :

CLEAR TREE, WINDOW, WHOLE

I1 est possible d'utiliser plusieurs fenetres (au sens X11) en

meme temps dans CLASS. L'existance de ces fenetres est construite
sous forme d'arbres. CREATE DIRECTORY permet de creer une nouvelle
instance de la classe fenetre, identiques a la fenetre par defaut
ouverte par DEVICE XAUTO. Pour aller travailler dans cette fenetre
il faut changer de repertoire (CHANGE DIRECTORY) .

On peut egalement creer des fenetres de taille definie grace a
CREATE WINDOW. CLEAR TREE, WINDOW, WHOLE efface 1l'arborescence des
fenetres, une fenetre ou la totalite de la structure de description.

M.aj. le 14 fevrier 2002 - J.M. Martin

Documents de travail :

Publication JPL 86-2 (15/12/1985) : format FITS pour IHW.

. FITS user's guide : ftp://nssdc.gsfc.nasa.gov/pub/fits (v. recente, mot de passe (!)), ou plutot
http:/fits.gsfc.nasa.gov/fits home.html.

Documentation sur le serveur http://www.cv.nrao.edu/fits.

. Ce qui se passe a Green Bank : - pour les donnees du 140 pieds, et les documents du GBT en ligne.
Un exemple de lecture de fichier FITS avec CLASS (P.Colom).

N —

oW

Les buts :

e Pouvoir exporter les données au format FITS, a partir du logiciel spécifique 'RT' de pré-traitement des
données, et si possible a partir des données brutes via un programme de conversion.
e Le format FITS utilise doit étre reconnu par les logiciels étrangers :
1. AIPS++ le nouveau logiciel du GBT et de Parkes,
2. CLASS, le logiciel développé a I'RAM et a 1'0Observatoire de Grenoble.

ftp://nssdc.gsfc.nasa.gov/pub/fits
http://fits.gsfc.nasa.gov/fits_home.html
http://www.cv.nrao.edu/fits
http://info.gb.nrao.edu/GBT/DA/140fits.html#FITS
http://info.gb.nrao.edu/GBT/DA/GBTda.html
http://aips2.nrao.edu/weekly/docs/aips++.html
http://iram.fr/GS/gildas.html

FITS

CFITS cookbook P.Colom November 24, 1997
J.M.Martin January 13, 2004

CFITS is a tool that permits format translation between FITS format and CLASS
format. It is part of the GILDAS package.

1) to export a CLASS file toward FITS format.

CFITS> file in toto.30m ! toto.30m is a CLASS binary file
CFITS> find/all ! find all spectra
CFITS> get £ ! get first spectrum

|

CFITS> fits\write toto.fits writes in FITS format (in toto.fits)

2) to import a FITS file toward CLASS format.

CFITS> read toto.fits ! reads a FITS format file
CFITS> file out toto.30m new ! creates a new CLASS file (empty)
CFITS> las\write ! writes in CLASS format (in toto.30m)

3) when there are many FITS files to import (all located in the same folder),
one should create a CFITS procedure with the following shell script:

echo "file out data.nrt new" > fits2class.pro

1ls -1 foldername | awk '$1 ~ /.fits/ {print "read",$1,"\nlas\\write"}' >> fits2class.pro
echo "" >> fits2class.pro

chmod u+x fits2class.pro

remarks:
1) in order to obtain a summary of the CFITS commands:
CFITS> help fits\

2) There are a few commands that pertain to both LAS and CFITS. To distinguish
them, you must to precise the langage. Example:

CFITS> las\write ! to write in CLASS format

CFITS> fits\write ! to write in FITS format

Last modification: January 13th, 2004. P. Colom, J.-M. Martin. W3 validator

Listing of the stokes.class procedure

stokes.class

written by : P. Colom, with help from Eric Gérard
Feb. 2008
aims: stokes parameters, linear polarisation parameter, PA, (U/Q)

-45)
0)

you need 2 scans: first with 0 and 90 deg (Rmer
second +45 -45 (Rmer

|
!
!
!
!
!
|
|
|
!

to fit a baseline, you need to mask the line and the spectrum start/end
! channels

define character outfile*20, infile*20
define integer first scan last scan

define real Vel start Vel end Vmin Vmax

|

GREG1\SET /DEFAULT

GREG1\PENCIL /DEFAULT

say "input file (MAX 20 char) 2 "

let infile =

say "output file (MAX 20 char, new name) ? "
let outfile =

|

file in 'infile'

file out 'outfile' new

i

say "first scan (0°,90°) :"
let first scan =

say "last scan (+45°,-45°) :"
let last scan =

|

set scan first scan first scan ! angles : first, second = 0, 90°
find /all - -

list

set format brief ! brief header for plot

set weigh equal ! equal weight for sum or accu

get £

! define dimension of angle psi
define real psi[channels]
plot
get n
plot
accu ! Stokes I
plot

say " eliminate spectrum start/end channels : Vel start and Vel end"
let Vel start =

let Vel end =

say " baseline fit : you need to mask the line between Vmin & Vmax"
let Vmin =
let Vmax
!

set mode x Vel start Vel end ! eliminates channels at both ends
set window Vmin Vmax - ! masks the line

base 2 /plot ! second order polynomial fit
! pause " Stokes I -- type cont to go ahead"

|

memorize I1

get £

get n

multiply -1

accu ! Stokes Q

plot

base 2 /plot

memorize SQ

! pause " Stokes Q -- type cont to go ahead"
get n ! LCP

get n ! RCP

multiply -1

accu ! Stokes V

plot

base 2 /plot

memorize V1

! pause " Stokes V -- type cont to go ahead"
! and now: rotation of feed horn by 45 deg
set scan last scan last scan ! angles : first, second = = +45, -45
find /all - B

list

get £

plot

get n

plot

accu ! Stokes I

plot

base 2 /plot

memorize I2

! pause " Stokes I -- type cont to go ahead"
get £

get n

multiply -1

accu ! Stokes U

plot

base 2 /plot

memorize SU

! pause " Stokes U -- type cont to go ahead"
get n ! LCP

get n ! RCP

multiply -1

accu ! Stokes V

plot

base 2 /plot

memorize V2

! pause " Stokes V -- type cont to go ahead"
i

! compute averages of I and V, and ratio U/Q
retrieve Il

retrieve I2

accu
mult 0.5

memorize SI ! Stokes I

plot

write

pause " average of Stokes I -- type cont to go ahead"
retrieve SQ

write

plot

pause " Stokes Q -- type cont to go ahead"

! degree of linear polarization

memorize Pl ! Q9 in P1

retrieve P1

let RY = RY*RY 1 Q"2

memorize Pl
retrieve SU

let RY = RY*RY 1 Un2
retrieve Pl
accu 10”2 + U”2

let RY = sgrt (RY)

retrieve SI

swap ! Exchange the contents of the R and T buffers
divide 0.5 ! sqgrt(Q*2 + U"2) / I

memorize Pl

i

retrieve SQ

retrieve SU

write

plot

pause " Stokes U -- type cont to go ahead"

divide 0.5 ! divide U by Q (0.5 is a threshold, avoid /0)
plot

pause " U/Q -- type cont to go ahead"

|

psi = 0.5*%atan(ry) ! position angle

psi = psi*180./pi

ry = psi

set mode y -90 90

plot

write

pause " psi = 1/2 arctan(U/Q) -- type cont to go ahead"
|

retrieve P1

set mode y 0 1

plot

write

pause " degree of linear polarization -- type cont to go ahead"
|

retrieve V1

retrieve V2

accu

mult 0.5

set mode y total

plot

write

pause " average of Stokes V -- type cont to go ahead "

set scan * * ! release constraint on scan number
Say L S S S
say " conclusion: we have written in " 'outfile'

say " 1) "

say " 2) Q "

say " 3) u "

say " 4) psi = 1/2 arctan(U/Q) "

say " 5) degree of linear polarization”
say "g) "
say " -—-————————————= end of stokes.class

P. Colom - March 26, 2008

Listing of the abb.class procedure

symbol bankl "las\set telescope NANCAYRT-B1" ! correlator banks
symbol bank2 "las\set telescope NANCAYRT-B2"

symbol bank3 "las\set telescope NANCAYRT-B3"

symbol bank4 "las\set telescope NANCAYRT-B4"

symbol bank5 "las\set telescope NANCAYRT-B5"

symbol bank6 "las\set telescope NANCAYRT-B6"

symbol bank7 "las\set telescope NANCAYRT-B7"

symbol bank8 "las\set telescope NANCAYRT-B8"

symbol fa "find /all"

symbol fi "file in spectra.nrt" ! Nancay Radio Telescope file
symbol gn "get next"

symbol gf "get first"

symbol mx "las\set mode x"

symbol my "las\set mode y"

symbol b0 "base 0 /plot"

symbol bl "base 1 /plot"

symbol b2 "base 2 /plot"

symbol b3 "base 3 /plot"

symbol b4 "base 4 /plot"

symbol cp "clear plot"

symbol ca "clear alpha"

symbol nrt "las\set extension .nrt"

symbol pico "las\set extension .30m"

set plot histo

set format long

nrt ! default extension : NRT

PColom - April 30, 2002

	Data processing
	Data processing softwares: specific informations
	Comparaison SIR/CLASS (08/96)
	Format FITS - projet FORT, traitement de donnees
	CFITS cookbook
	Stokes
	CLASS abbreviations

