
Data processing softwares and formats (partly written in
french)

Connection between
the functions of SIR and those of CLASS (stage P. Hoegstoel 96, in french).
Documentation about
FITS format (in french, includes US links).
CFITS cookbook: How to read FITS file
with the CFITS program (from the Grenoble package).
The CLASS software is available on the nanrt5 Nanï¿½ay
computer:
Since the CFITS program of this version does not work, please try the old Meudon mesioq computer version
with
the following setup:
alias -x class="/recqdata/martin/osf1/bin/class"
alias -x cfits="/recqdata/martin/osf1/bin/cfits" (etc...)
export GAG_ROOT=/recqdata/martin
export GAG_SYS=osf1
stokes parameters CLASS procedure to compute the Stokes parameters, linear polarisation parameter and PA :
under the CLASS prompt, call the procedure stokes.class (@stokes, version FEB 2008).
CLASS abbreviations : under the CLASS
prompt, call the procedure abb.class (@abb,
version April 2002).
NCDRT : Nancay
Continuum Data Reduction Tool, M. Roos Serote's software
developed for reducing the
continuum data
obtained with the NRT.

October 19th, 2007. P. Colom, J.-M. Martin

Last modification: 26 March 2008. P. Colom

https://www.obs-nancay.fr/wp-content/uploads/2026/01/stokes.zip
https://www.obs-nancay.fr/wp-content/uploads/2026/01/abb.zip
http://astro.oal.ul.pt/~roos/

	 AOUT 96.

	 Help de comparaison des instructions SIR et CLASS

		 Systeme Interactif de Reduction

	 Continuum and Line Analysis Single-dish Software
	
			

Preliminaires :

Ce document reprend l'ordre alphabetique de l'aide
de SIR et pour chaque commande donne un equivalent
dans CLASS.

Il est bases sur les version suivantes :

SIC		 V 8.0	 du 15-DEC-94
LAS		 V 4.1-0 du 08-APR-88
SIR		 V 05/95 du 29-MAY-95

La plupart des commandes arithmetiques, des fonctions de
langages, comme les boucles, les tests logiques... sont
en fait des commandes SIC.

Les fonctions de plus haut niveau (typiquement les manipulations
de spectres ou de headers) sont des commandes CLASS.

Ces deux modules etant intimement lies (avec d'autres en plus),
il n'est pas a la charge de l'utilisateur de preciser si il
s'agit d'une commande CLASS ou SIC ou autre, sauf en cas
d'ambiguite, ce qui est de suite signale par l'interpreteur
de commandes.

Dans ce qui va suivre, il peut arriver qu'un paragraphe (la
description d'une commande) fasse allusion a une autre commande.
Dans ce cas il est ecrit COM1 => COM2 ou COM1 represente la
commande SIR et COM2 la commande equivalente CLASS.

Tous les paragraphes sont construits de la maniere suivante :

COMMANDE SIR

 COMMANDE CLASS : commentaires
		 (eventuellement un exemple)
	
la commande Class est remplace par "inexistant" si il n'y a pas
d'equivalent au sens strict du terme.

Les instructions LET sont facultatives et sont precisees pour bien
montrer qu'il s'agit d'une affectation.

--
--

ABSO

 ABS : 	Retourne la valeur absolue d'un argument.
	 ex : 	 DEFINE INTEGER A
		 LET A = ABS(-10)

	 On ne trouvera pas d'equivalent a ABSO* ou tout autre
	 manipulation sur les tableaux 1..8 specifiques a SIR.
	 Cela restera vrai pour toutes les commandes les manipulant.

ADDI

 "+" : 	Cette fonction est remplace par l'operateur mathematique
	 "+" et donc est plus naturel d'emploi.
	 ex :	 DEFINE INTEGER A B
		 LET A = 10
		 LET B = 20
		 LET A = (A+B)

	 SIR autorise la concatenation de chaines avec ADDI.
	 Sous CLASS, la concatenation s'effectue de la maniere
	 suivante :

	 ex :	 DEFINE CHARACTER CHAINE1*5 !*5, *6, *11
		 DEFINE CHARACTER CHAINE2*6	 !representent les
		 dEFINE CHARACTER CHAINE3*11	 !longueurs des chaines
		 LET CHAINE3 = 'CHAINE1''CHAINE2'

	 On prendra soin de declarer une variable cible suffisamment
	 grande en taille.

AREA

 AREA :
	 AREA est une variable globale du header dont la valeur
	 peut etre editee a l'aide de EXAMINE ou SAY. Cette variable
	 est modifiee en fonction des operations qui sont effectuees
	 sur les donnees. Par exemple, a l'issue d'une soustraction
	 de ligne de base, AREA va prendre la valeur de l'aire non
	 masquee sous la ligne de base.
	 La maniere "classique" de faire un calcul d'aire est de charger
	 un spectre (ou une moyenne), de definir un masque, de soustraire
	 une ligne de base, definir le nombre de gaussiennes a fitter, et
	 rechercher ces gaussiennes.

	 ex :	 FILE IN toto.nan
		 FIND/ALL
		 SUM
		 DEVICE XAUTO WHITE
		 PLOT
		 SET WINDOW		 ! voir CLIP => SET MASK
					 ! 	 => SET WINDOW
		 BASE n/PLOT		 ! n = degre du polynome
		 LINES 2			 ! pour 2 gaussiennes
		 GAUSS			 ! recherche interactive
					 ! a l'aide du curseur.
					 ! le click souris marche !
		 FIT			 ! affiche le resultat

Les parametres tels que l'aire sont alors affiches a l'ecran.
	

ASKN

 LET : La saisie d'une valeur numerique ou alphanumerique se
	 programme par l'instruction LET sans utiliser de valeur
	 derriere.

	 ex :	 LET x = 10 initialise a 10 la variable x.
		 LET x invite l'utilisateur a entrer
			 la valeur de x et fourni l'affichage
			 suivant a l'ecran : x =
		 Un retour chariot sans entrer une valeur ou la saisie
		 d'une valeur incoherente vis a vis du type de variable
		 provoque une erreur et la pause caracteristique de
		 tout probleme dans l'execution d'une procedure CLASS.

	 L'option SYNTAX | FIXED | FREE | permet de ne pas preciser
	 (dans le cas de FREE) la commande LET. Ainsi l'instruction
	 x = 10 sera valide. FREE est l'option par defaut.

	 Dans les versions recentes de SIC, vous pourrez trouver
	 l'option /RANGE ou /CHOICE permettant de controler
	 immediatement la validite de la valeur saisie.

BASE

 BASE : La soustraction d'une ligne de base fonctionne a peu pres
	 de la meme maniere dans les deux systemes.
	 CLASS charge un spectre dans un tableau R. Lors d'un appel
	 a BASE, ce tableau est copie dans un tableau memoire T. La
	 soustraction de la ligne de base est alors appliquee sur le
	 tableau R.

	 ex :	 FILE IN toto.nan
		 FIND
		 GET FIRST
		 SET WINDOW	 ! definition interactive d'un masque
		 BASE 4/PLOT	 ! degre 4 et imprimee sur le graphique

	 le degre du polynome a soustraire peut aussi etre defini par
	 SET BASE n. Par defaut n = 1.

	 L'utilisation de masques (comme SETM de SIR) fait intervenir
	 dans CLASS la notion de fenetre (WINDOW).
	 Voir SETM => SET WINDOW

BRAL

 inexistant :
	 ne pas chercher l'equivalent d'un goto ou tout autre
	 branchement inconditionnel comme BRAL dans CLASS puisque
	 cela n'existe pas ! Dans un souci de lisibilite, de
	 maintenance et de fiabilite de programmation, les
	 structures de programme qui ont ete inclue dans SIC (et
	 donc dans CLASS) sont les IF..THEN..ELSE..ENDIF, FOR..NEXT
	 et FOR/WHILE..NEXT que l'on retrouve dans tous les langages
	 de programmation classique.
	 Cela necessite de penser ses procedures differemment.
	 Le BRAL n'est absolument pas necessaire sir l'on agence bien
	 les differentes etapes de son programme. Les boucles WHILE,
	 associees a des tests IF, permet de venir a bout de n'importe
	 quel algorithme du 20eme siecle. (Mis a part les besoins
	 incontournables de la recursivite).
	
	 ex : 	 Imaginons la situation SIR suivante :

	 1:	ASKN "Entrer 0 ou 1 :", A
		 BREQ 2, A
		 COMP 1, A
		 BREQ 3
		 BRAL 1
	 2: MESS Vous avez entre 0
	 3:	MESS Vous avez entre 1

	 	 Cet exemple va boucler tant que l'utilisateur
		 n'aura pas entre effectivement 0 ou 1 et sauter
		 au paragraphe 2 ou 3 selon la valeur entree.

		 L'equivalent en CLASS s'ecrira :

		 DEFINE INTEGER VALEUR
		 LET VALEUR
		 FOR/WHILE VALEUR.NE.0.AND.VALEUR.NE.1
			 LET VALEUR
		 NEXT
		 IF VALEUR.EQ.0 THEN
			 SAY "Vous avez entre 0"
		 ELSE
			 SAY "Vous avez entre 1"
		 END IF

		 Certes, vous aurez tape 10 lignes de code au lieu
		 de 7, mais la lisibilite sera nettement meilleure,
		 et la comprehension ulterieure du programme s'en
		 resentira. Seuls le temps et la pratique permettent
		 de se convaincre de l'interet de ce genre de syntaxe.

		 Pour tester la validite d'une reponse, voir aussi
		 la derniere remarque de ASKN => LET.	

BREA

 PAUSE :Il n'existe malheureusement pas d'equivalent a la
	 commande BREAK de SIR. Celle qui s'en rapproche le
	 plus est l'instruction PAUSE qui met en suspens
	 l'execution de la procedure jusqu'a ce que
	 l'utilisateur entre (pour continue) puis
	 ou bien " puis pour quitter.

		 ex :	 PAUSE "Ceci est une pause. pour continuer"

BREQ

 inexistant :
 Comme pour BRAL, on ne trouvera pas d'equivalent dans SIC.
 Il faut structurer son programme de maniere a n'utiliser que
 des boucles FOR..NEXT, FOR/WHILE..NEXT et des tests IF..ENDIF
 Ne pas chercher a faire IF condition THEN GOTO puisque le
 goto n'existe pas. Ce qui aurait du figurer dans le paragraphe
 du goto devra tout simplement etre mis a la suite du IF.
 ELSE et/ou l'imbrication de plusieurs IF permet d'avoir
 ainsi plusieurs cas possibles.
 Les tests logiques possibles sont detaille ci-dessous.

BRGE

 inexistant :
 Meme remarque que pour BRAL.
 en ce qui concerne les tests logiques destinees a effectuer
 telle ou telle operation en fonction du resultat, SIC offre les
 fonctions suivantes :
 .OR. ou logique
 .AND. et logique

 .NOT. non logique
 .GT. >
 .LT. <
 .GE. >=
 .LE. <=
 .NE. <>
 .EQ. =

 Les . sont a respecter dans la syntaxe.
 voir exemple de BRAL=>inexistant

BRGT

 inexistant : idem ci-dessus

BRLE

 inexistant : idem ci-dessus

BRLT

 inexistant : idem ci-dessus

BRNE

 inexistant : idem ci-dessus

CALL

 @ : l'appel d'une procedure a l'interieur d'une
 autre procedure est possible dans CLASS,
 tant que l'on ne fait pas d'appel recursif,
 c'est a dire appeler une procedure a l'interieur
 d'elle meme.
 ex : Si une procedure A doit appeler une procedure
 B, on tapera au prompt /LAS de CLASS :

 @ A pour appeler la procedure principale.
 (on peut se creer des racourcis ou alias par
 la commande SYMBOL)
 le corps de la procedure A fera de la meme
 maniere a B : @ B

 Un des avantages majeur de SIC, est qu-il permet de
 passer en argument des parametres aux fonctions appelees.
 Pour reprendre l'exemple du paragraphe BRAL => inexistant,
 imaginons que nous voulions remplacer le IF..THEN..ELSE
 par une procedure independante. Nous ecrivons alors :

 DEFINE INTEGER VALEUR
 LET VALEUR
 FOR/WHILE VALEUR.NE.0.AND.VALEUR.NE.1
 LET VALEUR
 NEXT
 @TEST VALEUR

 La procedure TEST s'ecrira donc :

 ! procedure TEST.CLASS

 DEFINE INTEGER VALEUR_RECU
 LET VALEUR_RECU = &1
 IF VALEUR_RECU.EQ.0 THEN
 SAY "Vous avez entre 0"
 ELSE
 SAY "Vous avez entre 1"
 END IF
 RETURN

 Dans la premiere procedure, nous appelons @ TEST en lui
 donnant comme argument la variable VALEUR.
 La procedure destination reconnait les arguments qui lui
 sont donnes grace a leur position. Il faut donc, dans
 le cas d'arguments multiples, qu'il y ai adequation entre
 la position des arguments donnes et celle des arguments
 attendus. Le nombre maximum d'argument est 8. Leurs noms
 , dans la procedures destination sont &1, &2, &3...
 Je conseillerai vivement de recopier de suite la valeur
 dans une variable plutot que de travailler directement sur
 &x, ce qui d'ailleur n'est pas toujours possible.

 Les procedures ne sont pas des fonctions et le passage
 d'arguments est unilateral c'est a dire q'une procedure
 ne peut pas donner de parametre a sa procedure appelante.

 On peut contourner ce probleme en utilisant des variables
 globales :
 Si l'on declare dans une procedure :

 DEFINE REAL TRUC/GLOBAL, cette variable sera connu de toutes
 les procedures appelees, quelque soit leur niveau d'
 imbrication. Ainsi si une procedure B appelee par @B dans
 une procedure A fait LET TRUC = TRUC+1, ce resultat sera
 connue de la procedure appelante A puisque la variable est
 globale.

 La difference avec une variable dite locale dans une procedure,
 c'est que cette derniere est detruite (enlevee de la memoire)
 lorsque la procedure se finit. Exactement comme quand on
 effectue un DELETE/VARIABLE nom_variable.

CHPY

 inexistant :
 voir HARD => HARDCOPY

CIDX

 FIND : Lorsque l'on cherche des spectres a partir d'un certain
 nombre de criteres (voir CRIT => SET), on cree le resultat
 de la requete a partir de l'instruction FIND. Un tableau
 appele INDEX contient tous les numeros de spectres issus
 de la recherche. INDEX est un tableau comme tous les autres
 qui peut se manipuler element par element : INDEX[1],
 INDEX[10], INDEX[i].
 Le nombre d'elements trouves, ce qui correspond aussi a la
 taille du tableau INDEX est donne par la variable globale
 FOUND.

 FIND/ALL travaille de la meme maniere que FIND en ommettant
 le critere de selection sur les numero de version.
 Si aucun critere de version n'a ete defini, FIND et FIND/ALL
 retourneront le meme resultat d'INDEX.

 LIST IN affiche a l'ecran la liste des spectres contenus
 dans le fichier FILE IN sans tenir compte des criteres
 de recherche.

 voir aussi CRIT => SET
 MCRI => SET

CLEA

 inexistant :
 Cependant, on peut soit utiliser une boucle FOR pour
 reinitialiser le tableau. En fait la boucle est implicite
 puisqu'il suffit d'ecrire :

 DEFINE INTEGER TAB[10] ! tableau de 10 entiers

 LET TAB[i] = 0 ! cela marche aussi pour plusieurs
 ! dimensions

 ON peut aussi effacer la variable et la recreer :

 DELETE/VARIABLE TAB
 DEFINE INTEGER TAB[10]

 mais la 1ere solution est bien meilleur car il n'y a qu'une
 seule declaration.

CLIP

 SET MASK :
 SET WINDOW :
 toutes les operations de masquage de points passent par SET
 WINDOW ou SET MASK.

 SET WINDOW est utiliser pour masquer des points dans le cas
 d'une recherche de ligne de base.
 On peut definir plusieurs fenetres :

 SET WINDOW pt11 pt12 pt21 pt22 ...

 Les points definis dans la fenetre sont masques.
 Ce parametrage peut s'effectuer interactivement et graphiquement
 par le biais d'un curseur. (SET CURSOR ON).
 Dans ce cas des touches sont predefinies car les boutons de
 la souris ne sont pas geres.

 N new boudary
 C cancel last entry
 H help
 E exit
 SHOW WINDOW permet d'afficher les fenetres definies.
 DRAW WINDOW les affiches en surimpression du spectre.

 SET MASK cache des points pour la recherche d'une gaussienne.
 Memes remarques pour SET CURSOR ON
 les touches predefinies
 SHOW MASK
 DRAW MASK

CLRM

 SET MASK :
 SET WINDOW :
 Pour effacer un masque precedemment defini, il faut
 executer la commande SET WINDOW (ou SET MASK) sans
 parametre et taper immediatement E pour sortir de la
 saisie interactive.
 Utiliser SET WINDOW 0 0 reduit le masque a un intervalle
 ridicule mais ne le detruit pas vraiment.

 ATTENTION : CLEAR WINDOW existe mais n'a rien a voir avec
 la notion de masque et efface la fenetre graphique de l'ecran
 ainsi que tout ce qui s'y rapporte.

COMP

 inexistant :
 Il n'y a pas d'operateur de comparaison au sens de COMP.
 Cependant, on trouve tous les operateurs logiques necessaires.
 Ceux-ci sont donnes au paragraphe BRGE => inexistant.
 Associes a la fonction IF, ils rendent le meme service.

CORR

 inexistant

COSR

 COS :
 COSH : cette fonction retourne le cosinus (ou cosinus hyperbolique)
 de la valeur qui lui est donne en argument.

 ex : DEFINE REAL A B
 LET A = 3.14
 LET B = COS(A) ! retournera -1

 Les arguments doivent etres donnees en radians.
 La constante PI est definie en globale pour d'eventuelles
 conversions.

CRIT

 SET : Pour definir un ou plusieurs criteres de recherche, on
 impose a l'aide de la fonction SET des valeurs a un certain
 nombre de rubriques du header des spectres.

 ex : si l'on recherche tous les spectres dont le
 numero de version est 2 on pourra taper :
 SET NUMBER *2

 * faisant office de "joker" et remplacant
 n'importe quel caractere.
 La variable VERSION existe et peut etre interrogee
 grace a EXAMINE mais ne peut pas faire l'objet
 d'un SET particulier.
 On peut effectuer un SET sur la majorite des rubriques
 du header.

 SET DEFAULT permet d'annuler tous les criteres definis.

 Une instruction supplementaire, IGNORE, permet d'isoler
 des spectres qui ne seront jamais selectionnes quelque
 soient les criteres definis par SET.

 voir aussi CIDX => FIND
 MCRI => SET

CURS

 SET CURSOR ON :
 rend visible le curseur en vue de son utilisation sur
 la fenetre graphique.
 voir aussi SETM => SET WINDOW
 => SET MASK

DBUG

 inexistant :
 cette option de debugage peut etre remplace par l'affichage
 de message et de contenus de variables judicieusement
 places.

DEFI

 inexistant :
 Les 8 tableaux predefinis de SIR n'existent pas dans CLASS,
 cependant, on peut declarer autant de tableaux que l'on veut
 par DEFINE type nom_var[dim]

 ou type est le type des elements contenus dans le tableau
 nom_var le nom du tableau
 dim sa dimension (unique ou multiple)

 dans ce cas, l'intervalle d'utilisation de ce tableau
 est sa dimension.

 voir aussi LOAD => GET

DIVI

 "/" :
 "|" : La fonction de division est remplacee par l'operateur
 mathematique qui y est habituellement associe.
 l'operateur "/" etant egalement utilise pour certaines
 options comme LET.../WHERE, SIC offre la possibilite
 d'effectuer une division a l'aide du symbol "|"

 ex : DEFINE INTEGER A
 DEFINE INTEGER B
 DEFINE REAL C

 LET C = (A|B)

EINT

 INT : INT retourne la partie entiere de l'argument qui lui est
 donne.
	
	 ex :	 DEFINE REAL A
		 DEFINE INTEGER B
		 LET A = 4.567
		 LET B = INT(A)

		 B prend la valeur 4

	 A noter qu'il existe dans CLASS une fonction qui arrondie
	 une valeur a l'entier le plus proche : NINT.

		 si l'on ecrit :
		 LET B = NINT(A)
	
		 B prendra la valeur 5
	

ENDL

 NEXT :	la fin d'une boucle, dans CLASS, est marquee par l'instruction
	 NEXT, qu'il s'agisse d'une boucle FOR...NEXT ou d'une boucle
	 FOR/WHILE...NEXT.

	 rem : les variables compteur des boucles FOR (I) sont declares
	 implicitement.	

	 ex :	 DEFINE INTEGER TAB[10]
		 FOR I 1 TO 10
			 EXAMINE TAB[I]
		 NEXT

	 ex :	 DEFINE INTEGER TAB[10]
		 DEFINE INTEGER COMPTEUR
		 LET COMPTEUR = 10
		 FOR/WHILE (COMPTEUR.GT.0)
			 EXAMINE TAB[I]
			 LET COMPTEUR = COMPTEUR-1

		 NEXT
		

ENTE

 LET : 	Il n'y a pas d'equivalent a cette fonction dans le sens ou
	 le vecteur @ de SIR n'existe pas. Cependant, une fois que
	 l'on a declare un tableau (DEFINE) on peut initialiser
	 chacun de ses elements a l'aide de la fonction LET.

	 ex :	 DEFINE INTEGER TAB[10]
		 LET TAB[3] = 5
		 LET TAB[7] = 4
	
	 si l'on veut que la valeur soit definie a l'execution,
	 il suffit de ne pas mettre de valeur.

		 LET TAB[3]
		 LET TAB[7]

EVAL

 inexistant :
	 l'evaluation d'une expression arithmetique composee ne
	 necessite pas, dans CLASS, d'instruction particuliere.
	
	 ex :	 DEFINE REAL A
	 	 LET A = MIN((EXP(COS(3.14))),(EXP(SIN(3.14))))

	 SIC propose a peu pres toutes les fonctions classiques :

	 fonctions a 1 argument :	
	 ABS, ACOS, ASIN, ATAN, COS, COSH, EXP, INT, LOG, LOG10,
	 NINT, SIN, SINH, SQRT, TAN, TANH

	 fonctions a 2 arguments :
	 ATAN2, MAX, MIN, MOD, SIGN

	 operateurs :
	 +, -, *, / ou |, ** ou ^

	 Les operations sur dates gregoriennes ou juliennes
	 ne sont pas predefinies dans CLASS mais peuvent
	 reprogrammees comme une procedure ou comme une
	 fonction. En effet, l'utilisateur peut definir ses
	 propre fonctions a l'aide de DEFINE FUNCTION
	 ainsi l'exemple ci-dessus pourrai devenir :

 	DEFINE REAL A
 	DEFINE REAL ARG1 ARG2

 	DEFINE FUNCTION TRUC(P1, P2) MIN((EXP(COS(P1))),(EXP(SIN(P2))))

 	LET ARG1 = 3.14
 	LET ARG2 = 3.14
 	LET A = TRUC(ARG1, ARG2)	

EXPN

 EXP : Cette fonction retourne l'exponentiel de son argument.

	 ex :	 DEFINE INTEGER A
		 LET A = 1
		 SAY 'EXP(A)' affichera 2.718
	
EXTR

 inexistant :
	 Cette fonction qui dans SIR fournie les indices et valeurs
	 du minimum et/ou du maximum d'un tableau est facilement
	 reprogrammable a l'aide d'une boucle parcourant un tableau.

FFTA

 FFT :	 l'instruction FFT lance le calcul de la transformee de
	 Fourier sur le tableau R et trace le resultat dans la
	 fenetre graphique. Le contenu du tableau R n'est pas
	 affecte par ce calcul.
	 On peut definir des zones a effacer en utilisant le
	 curseur comme pour definir une fenetre. E (exit) permet
	 de sortir de la fenetre graphique.
	 FFT/REMOVE.

FOLD

 FOLD : La commande FOLD
	

GAUS

 GAUSS :fit d'une gausienne sur un spectre. Il faut avoir prealablement
	 defini un masque et soustrait une ligne de base.
	 l'instruction LINES permet de definir certains parametres comme
	 le nombre de gaussiennes a fitter.

	 Une fois ces elements definis, il suffit de taper GAUSS puis FIT
	 pour visualiser dans la fenetre graphique.

	 METHOD 	GAUSS
		 SHELL
		 NH3(n,n)
		 HFS
		 CONTINUUM

	 permet de fixer une methode de fit.

	 voir BASE => BASE
	 voir CLIP => SET MASK
		 => SET WINDOW

GETF

 inexistant :
	 En ce qui concerne les exportations et importations de fichiers,
	 il faut s'orienter vers la commande GREG. +fits (CFITS)

GETM

 SHOW MASK :
 SHOW WINDOW :
	 ces instructions permettent d'afficher les masques et fenetres
	 definies par SET MASK et SET WINDOW.

HARD

 HARDCOPY :
	 Fournie un fichier postscript de l'ecran graphique.
	 cette fonction propose differentes options concernant
	 l'orientation de la feuille, le peripherique de sortie...

	 ex :	 HARDCOPY nom_fic /DEVICE PS FAST ! (ou GREY ou COLOR)

	 L'option /PLOT permet de faire une sortie immediate.

HEAD

 HEADER :
 MODIFY :
 TAG :	 HEADER affiche le contenu du header du spectre courant.
	 MODIFY et TAG permettent d'intervenir sur le contenu.
	 TAG est juste destine a renseigner sur la qualite de
	 l'observation. C'est une valeur entiere de 0 a 9.
	 MODIFY permet de changer les principaux parametres du
	 header :
		 frequence, offset, canal de ref, nom de raie,
		 vitesse au repos, resolution...

		 La syntaxe est a peu pres toujours la meme :

	 MODIFY nom_rubrique valeur

HELP

 HELP : Aide "en ligne" de CLASS comprenant principalement la
	 description des instructions SIC, LAS, ANALYSE et GTVL.
	 Le manuel de reference reste cependant indispensable
	 pour un bon nombre de details.

HIST

 inexistant :
	 Il n'y a pas la possibilite, sauf creation d'une
	 procedure particuliere, de construire l'histogramme
	 d'un tableau.

	 SET PLOT H permet de tracer un spectre sous forme
	 d'histogramme. Cependant, il ne s'agit pas de
	 l'histogramme du spectre qui doit fournir une
	 quantification du nombre de canaux pour une temperature
	 donnee. (comme c'est le cas dans SIR)

INDV

 inexistant :
	 Pour obtenir la vitesse correspondant a un indice donne
	 , il faut interroger le tableau RX.

	 ex : 	 SAY 'RX[30]' affichera la vitesse du point
		 d'indice 30.

	 Pour la fonction reciproque il faut programmer une
	 fonction qui recherche la vitesse souhaitee et qui
	 retourne l'indice correspondant.

INTE

 ACCUMULATE :
 SUM :	 ACCUMULATE permet d'integrer les 2 spectres des tableaux
	 R et T, le resultat etant conserve dans R. Cette integration
	 est ponderee en tenant compte du poids de chacun des spectres.

	 Si les spectres ne coincident pas dans leur position et
	 dans leur calibration (SET MATCH et SET CALIBRATION), un
	 message d'alerte est affiche.

	 SUM effectue l'integration de l'ensemble des spectres
	 contenus dans le tableau INDEX (voir CRIT => SET ou	
	 CIDX => FIND). Il y a egalement verification de la
	 coherence entre les calibrations et les positions.

INTV

 ACCUMULATE :
 SUM :	 Voir ci-dessus.

INVM

 inexistant : Il n'y a pas de methode prevue pour prendre le
	 complement des masques ou fenetres definies.

IPOL

 inexistant

LCRI

 SHOW :	La fonction SHOW est assez generale pour l'affichage
	 d'information. Associee a un champ particulier du HEADER,
	 elle renseigne sur son contenu. L'option ALL (SHOW ALL)
	 fourni la liste des parametres definis par l'instruction
	 SET. Une * doit signifier qu'il n'y a pas de contraintes
	 particulieres imposes sur un champs du header pour la
	 recherche par FIND.

LIST

 TYPE :	La commande TYPE utilisee seule affiche le contenu de la
	 pile des commandes entrees interactivement.
	
	 ex :	 Si depuis le debut de la session, l'utilisateur

		 a tape :
		 FILE IN toto.nan
		 FIND/ALL
		 DEVICE XAUTO WHITE
		 @ proc1.class
		 CLEAR WIN

		 TYPE fournira la liste de toutes ces instructions,
		 sauf celles qui seront issues de l'execution de
		 proc1.class.

	 TYPE nom_proc affiche le code de la procedure nom_proc a
	 l'ecran. L'extension du fichier peut etre omis si
 	 celui ci est .class. Si ce n'est pas le cas, il faut
	 la preciser.

	 ex : TYPE ma_proc		 ! si le fichier est ma_proc.class
		 TYPE mine_too.txt	 ! si pas .class

	 ATTENTION : l'instruction LIST existe dans CLASS mais sert
	 a afficher la liste des spectres de l'INDEX issu de la
	 recherche sur criteres par FIND.

LOAD

 GET :	 Il n'y a pas d'equivalent des 8 tableaux predefinis de SIR.

	 La structure de donnees qui s'en rapproche le est le tableau
	 defini automatiquement lors du chargement d'un spectre.
	 Lors de cette operation, un tableau RY conserve les valeurs
	 des ordonnees, RX celles des abscisses et toutes les donnees
	 du header sont egalement stockees en memoire. On peut memoriser
	 le spectre et son header dans une structure de copie par :

	 ex :	 FILE IN TOTO.NAN ! fichier de spectres
	
		 FIND/ALL
		 GET FIRST
		 MEMORIZE une_memoire
		 GET NEXT
		 MEMORIZE deux_memoires
		 GET NEXT

		 ! a ce moment, c'est le 3eme spectre de TOTO.NAN qui
		 ! est en memoire, mais on peut rappeler les deux
		 ! premiers en faisant :

		 RETRIEVE une_memoire

		 ! le 3eme est alors place dans une memoire tampon
		 ! TX, TY et "T"header. on peut le remettre dans la
		 ! memoire R par SWAP

		 RETRIEVE deux_memoires

		 ! dans ce cas, le 2eme spectre est mis dans R
		 ! le 1er qui etait dans R passe dans T
		 ! et le 3eme aui etait dans T disparait puisque
		 ! on ne l'a pas memorise.

LOGN

 LOG10 :
 LOG :	 Retourne le logarithme (ou le logarithme decimal) de
	 l'argument qui lui est donne.
	
	 ex :	 SAY 'LOG(10)'	 ! affiche 2.3
		 SAY 'LOG10(10)'	! affiche 1

	 voir aussi EVAL => inexistant

LOOK

 STAMP :La visualisation le plusieurs spectres sur la fenetre
	 graphique peut etre obtenu par STAMP.
	 cette fonction exige 2 arguments qui representent le
	 nombre de spectres horizontalement et verticalement.
	 On peut preciser l'option /NUMBER pour faire apparaitre
	 dans le coin superieur gauche de chaque fenetre le numero
	 de spectre concerne.

	 ex :	 FILE IN toto.nan
		 FIND/ALL
		 DEVICE XAUTO WHITE
		 STAMP 4 5 /NUMBER

	 affichera 20 spectres avec leur numero respectif, sous
	 forme d'un tableau de 4 colonnes de 5 spectres.

	 On peut afficher plusieurs spectres a des emplacements
	 determines par l'utilisateur a l'aide de SET BOX_LOCATION.
	 Cette instruction fonctionne de la maniere suivante :

	 ex :	 SET BOX_LOCATION 3 10 3 10
		 BOX
		 SPECTRUM

	 defini une boite dont le coin inferieur gauche est a 3
	 centimetres des bords de la feuille et le coin superieur
	 droit a 10 centimetres. Le point de coordonnee 0,0 etant
	 le coin inferieur gauche de la feuille d'affichage. Il
	 est sous entendu que la fenetre graphique represente une

	 feuille de format 21*29.7 d'ou la definition en cm des
	 arguments donnees a la fonction.

	 format general : SET BOX_LOCATION X1 X2 Y1 Y2 avec
	 X1 Y1 les coordonnees du coin inf. gauche et
	 X2 Y2		 du coin sup. droit de la boite a
	 afficher.

	 BOX affiche cette boite.
	 SPECTRUM insere dans cette boite le spectre courant.

	 TITLE n'est pas encore au point (V 4.1 88). Il s'affiche
	 toujour en haut de la fenetre graphique et non pas au dessus
	 de la boite.

	 Pour effacer la derniere operation graphique, utiliser
	 CLEAR SEGMENT puis ZOOM REFRESH.

LOOP

 FOR :	 Les boucles LOOP de SIR ont ete remplacees par des
	 structures plus evolues comme FOR...NEXT et FOR/WHILE...NEXT.

	 La boucle FOR...NEXT est une boucle a compteur d'iteration.

	 ex :	 FOR I 1 TO 50
			
			 suite d'instruction...
			
		 NEXT

	 Cette boucle va tourner jusqu'a ce que I prenne la valeur 51.
	 Les variables compteur de ce genre de boucle n'ont pas besoin
	 d'etre declarees. Elles le sont implicitement par l'interpreteur.

	 La boucle FOR/WHILE...NEXT est une boucle a interruption
	 conditionnelle suivant un test logique.

	 ex :	 DEFINE CHARACTER REPONSE*3

		 LET REPONSE
		 FOR/WHILE (REPONSE.EQ."O".OR.REPONSE.EQ."OUI")
			
			 suite d'instruction...
			
			 SAY " Recommencer le traitement ? (O/N)"
			 LET REPONSE
		 NEXT

		 tant que la valeur de REPONSE est O ou OUI,
		 les traitements inclus dans la boucle seront effectues.

MCRI

 SET :	 Pour ajouter un nouveau critere de selection (voir CRIT => SET)
	 , ou pour modifier un critere deja defini, il faut utiliser
	 l'instruction SET.

	 ex :	 SET NUMBER 1000 2000
		 SET OBSERVED 1-JAN-1996 31-JAN-1996
		 FIND

	 trouve tous les spectres dont le numero est compris entre
	 1000 et 2000 et dont l'observation a ete effectuee entre
	 le 1er et le 31 janvier 1996.

		 SET OBSERVED 1-JAN-1996 31-FEB-1996
		 SET LINE HI 21-cm
		 FIND

	 effectue une nouvelle recherche avec un intervalle de date
	 plus etendu et une nouvelle contrainte sur le nom de la raie.

MESS

 SAY :	 L'affichage a l'ecran d'un message s'obtient en utilisant
	 SAY de deux manieres possibles :

	 Afficher du texte :

	 ex :	 SAY "Ceci est un message"

	 Afficher le contenu de variables :

	 ex :	 DEFINE INTEGER A
		 GET FIRST
		 SAY 'A''RY[3]' ! affiche le contenu de A et
				 ! et la valeur du canal 3 du 1er spectre.

	 On peut combiner les deux possibilites :

	 ex : SAY "le contenu de A est :"'A'

MOVE

 LET :
 "=" :	 MOVE utilise comme operateur d'affectation, peut etre remplace
	 par l'operateur mathematique classique precede eventuellement
	 de l'instruction LET.

	 ex :	 DEFINE INTEGER A B
		 LET A = B	 ! met le contenu de B dans A
	
	 Cette affectation est la meme quelque soit le type de
	 donnee : entiers, reels, caracteres, tableaux, booleens...
	
	 L'affectation globale d'un tableau est possible si leurs
	 tailles sont identiques. On peut egalement affecter un
	 tableau d'entiers a un tableau de reels ou vice versa.
	 Dans ce dernier cas, les valeurs seront tronquees a leur
	 partie entiere.

	 ex :	 DEFINE INTEGER TAB1[5]
		 DEFINE INTEGER TAB2[5]
		 DEFINE REAL TAB3[5]
		 DEFINE INTEGER TAB4[9]

		 TAB1 = TAB2
		 TAB2 = TAB3

		 sont des affectations valides

		 TAB3 = TAB4

		 ne l'est pas car il n'y a pas coherence de taille.

			

MULT

 "*" :	 Il s'agit de l'operateur classique de multiplication.
	 on peut multiplier une variable unique ou multiplier
	 un tableau en une seule instruction.

	 ex :	 DEFINE INTEGER TAB1[3]
		 DEFINE REAL TAB2[3]
	
		 (ici aussi LET est optionnel)
		 LET TAB1 = TAB1*2
		 LET TAB2 = TAB2*TAB1

		 sont des affectations valides
		 On retrouve la contrainte de taille exprimee dans
		 le paragraphe precedent.
	

PFIT

 inexistant : pas de fonction pour avoir les coefficients d'un
	 polynome qui fitte sur un spectre.
	 Voir BASE => BASE.

PLOT

 HARDCOPY :
	 Fournie un fichier postscript de l'ecran graphique.
	 cette fonction propose differentes options concernant
	 l'orientation de la feuille, le peripherique de sortie...

	 C'est cette fonction aui permet dans CLASS d'effectuer
	 une sortie vers une table tracante en utilisant l'option	
	 /PLOT.	
	
	 ATTENTION : l'instruction PLOT existe dans CLASS mais sert
	 a tracer le spectre courant a l'ecran, ainsi que son titre,
	 et ses axes de coordonnees.

PRIN

 SIC OUTPUT :
	 Il ne s'agit pas tout a fait d'un equivalent puisque SIC
	 OUTPUT redirige les affichages SAY (voir MESS => SAY) dans
	 un fichier de sortie.
	 Ce dernier est ecrit uniquement lorsque l'on ferme le
	 fichier de sortie par l'instruction SIC OUTPUT.
	 Les affichages a l'ecran sont conserves.

	 ex :	 SAY "ce message s'affiche a l'ecran"
		 SIC OUTPUT sortie.txt
		 SAY "ce message sera a l'ecran et bientot dans le fichier"
		 SIC OUTPUT		 ! fermeture du fichier
		 SAY "Le second message est maintenant dans le fichier"

	 ATTENTION : l'instruction PRIN existe dans CLASS mais sert
	 a rediriger vers l'ecran ou vers un fichier un certain
	 nombre de parametres FIT, AREA, CHANNEL...

PUTF

 GREG :	On peut exporter un spectre dans un fichier binaire avec la
	 commande GREG.	 Il n'est pas possible de relire ces fichiers
	 avec CLASS. (il n'y a donc pas d'equivalent de GETF).
	

RDSY

 "@" :
	 Les symboles (ou alias) sont une propriete du langage SIC et
	 donc independant de CLASS. Si l'on souhaite conserver une
	 sauvegarde de plusieurs symboles, cela doit se faire dans une
	 procedure separee qui sera rappelee pour initialiser ces
	 alias. On ne peut les sauvegarder dans un fichier resultat
	 comme c'est le cas dans SIR.

	 La sauvegarde sera effectuee par SAVE qui ecriera un .CLASS.	

	 SYMBOL donne la liste des symboles.
	 SYMBOL X donne l'equivalent dy symbole X
	 SYMBOL X "equivalent" defini un nouveau symbole.

READ

 GET :	 Permet de charger un spectre dans le tableau R. Ce spectre
	 est obligatoirement issu du fichier defini comme fichier
	 d'entree a l'aide de l'instruction FILE IN. La destination
	 du spectre sera le tableau R, l'ancien contenu de ce tableau
	 etant recopie dans le tableau T. Si on lit un nouveau spectre,
	 le contenu de T est alors perdu. On peut l'eviter en memorisant
	 sont contenu a l'aide de MEMORIZE.

	 ex : 	 SET EXTENSION nan
		 FILE IN toto		 ! sous entendu toto.nan
		 FIND/ALL
		 LIST
		 GET 1234		 ! charge 1234 dans R		
		 GET 1235		 ! charge 1235 dans R et 1234 dans T
		 SWAP			 ! permute R et T
		 MEMORIZE save1		 ! memorise T dans save1
		 SWAP			
		 GET 1236		 ! charge 1236 dans R
		 RETRIEVE save1		 ! charge save1 dans R

	 GET sans option charge le 1er spectre de la liste
	 GET FIRST charge le premier
	 GET NEXT charge le suivant
	 GET LAST charge le dernier
		

REGR

 inexistant

RESM

 "@" :
	 On ne peut pas sauvegarder les parametres d'un masque
	 dans les fichiers resultats. Cependant, SAVE permet de
	 sauvegarder les parametres d'une session CLASS (parametres

	 etablis par SET) dans une procedure .CLASS.
	 Cette derniere peut donc etre rappelee par un "@" comme
	 n'importe quelle procedure.

RETU

 RETURN :
	 Cette fonction de retour de procedure peut etre utilisee de la
	 meme maniere que dans SIR, cependant, etant donne que SIC (et
	 donc CLASS) propose des structures de programme (boucles et
	 tests) evolues, on s'arrangera toujours pour avoir un
	 algorithme qui, quelque soit le devenir des variables, arrive
	 en fin de procedure avant de terminer son execution.
	 Une instruction RETURN a la fin d'une procedure aura pour
	 role de terminer proprement l'algorithme en propageant
	 une eventuelle erreur a la procedure appelante.

REVE

 inexistant :
	 Des lors que l'on peut manipuler les tableaux, on peut
	 reprogrammer ce genre de fonction.

ROTA

 inexistant :
	 meme remarque que precedemment.

SAVM

 SAVE : Il ne s'agit pas a proprement parle d'un equivalent puisque
	 le masque n'est pas sauve dans le fichier resultat mais dans
	 un fichier a part qui est en fait une procedure.
	 Cette procedure obtenue a l'aide de SAVE sauvegarde non
	 seulement les masques mais egalement tous les parametres qui
	 ont ete definis en interactif par SET.

	 voir RESM => "@"

SCAL

 SET MODE :
	 Permet de preciser un intervalle de valeurs pour les
	 abscisses et/ou les ordonnees pour le trace des spectres.
	 SET MODE accepte differents arguments :

	 SET MODE X pour preciser l'intervalle des abscisses.
	
	 ex : 	 SET MODE X AUTO
		 SET MODE X 1800 2200

	 definissent respectivement une echelle d'abscisse automatique
	 en fonction des valeurs trouvee dans le fichier, une echelle
	 d'abscisse definie par l'utilisateur.
	 Les valeurs precisees dans la 2eme forme doivent etre en accord
	 avec les unites choisies par SET UNIT.

	 SET MODE Y fonctionne de la meme maniere pour definir
	 l'intervalle des ordonnees.

SDCL

 SYSTEM :
 SHELL :
	 La commande qui calque le SDCL de SIR est SYSTEM. Cette
	 instruction permet de lancer une commande systeme (DCL si
	 c'est un environnement VMS, KSHELL par ex. si c'est un
	 environnement UNIX).
	
	 ex : 	 SYSTEM ls

	 ./
	 ../
	 essai1.class
	 essai2.class
	 stamp_carre.class
	 timer.class

		 SYSTEM "ls -n"

	 -rw-r--r-- 1 207 3000 744 Jul 22 15:00 essai1.class
	 -rw-r--r-- 1 207 3000 186 Jul 24 12:46 essai2.class
	 -rw-r--r-- 1 207 3000 889 Jul 29 15:37 stamp_carre.class
	 -rw-r--r-- 1 207 3000 882 Jul 24 17:40 timer.class

	 Les commandes systemes qui necessitent des arguments doivent
	 etre mises entre guillemets.

	 rem : On peut lancer ainsi l'execution d'un programme externe
	 (programme C compile par exemple). Le passage d'arguments a
	 un programme C est eventuellement possible par le biais des
	 arguments de la ligne de commande, moyennant quelques astuces
	 et contraintes qui ne seront pas discutes ici.
	

	 La commande SHELL bascule vers le prompt du systeme. On peut
	 y effectuer l'ensemble des commandes systeme habituelles.
	 Pour revenir a CLASS il faut taper EXIT.

SETM

 SET MASK :
	 Defini un intervalle de points a masquer. La fonction autorise
	 deux argument qui representent le point de depart et le point
	 d'arrivee du masque.
	 On peut obtenir l'intervalle masque ulterieurement en utilisant
	 la fonction SHOW MASK. DRAW MASK permet de symboliser le
	 masque en surrimpression du graphique du spectre. Les valeurs
	 specifiees pour le masque doivent etre exprimees dans l'unite
	 choisie par SET UNIT.

	 ex :	 SET MASK 100 200	 ! exprime en canaux
		 SHOW MASK		 ! affiche l'intervalle 100 200
		 DRAW MASK 0.5 		 ! "trace" le mask en ordonnee 0.5

	 Voir aussi CLIP => SET MASK
			 => SET WINDOW

SHIF

 MODIFY :
	 MODIFY peut etre utilisee avec differentes options.
	 MODIFY FREQUENCY
	 MODIFY VELOCITY
	 MODIFY RECENTER en ce qui concerne le lien avec SHIF.

	 Cela permet de modifier l'echelle des frequences (FREQUENCY),
	 de modifier le canal de reference (RECENTER ou LET REFERENCE x)
	 et de recentrer ce canal de reference sur une frequence donnee
	 (MODIFI VELOCITY).
	 L'axe des abscisses n'est modifie en consequence qu'a l'issue
	 d'un nouveau PLOT ou CLEAR puis BOX.
			

SHOW

 PLOT :	Trace le spectre dans la fenetre graphique. Cette fenetre doit
	 avoir ete prealablement definie par DEVICE XAUTO WHITE (pour un
	 terminal X). Un fois le spectre charge en memoire par GET (voir
	 LOAD => GET et READ => GET), PLOT affiche successivement une
	 fenetre vide (CLEAR), la boite determinant les abscisses et les
	 ordonnees (BOX), le spectre (SPECTRUM) et le titre (TITLE).
	 Ce trace prend toute la place disponible dans la fenetre.
	 (voir aussi LOOK => STAMP et les remarques sur SET BOX_LOCATION).
	

	 ATTENTION : L'instruction SHOW existe dans CLASS mais sert
	 a afficher dans la fenetre alphanumerique different parametres
	 definis par SET (SET MASK, SET NUMBER...)

SHOM

 DRAW MASK :
	 On peut representer les intervalles masques par SET MASK ou
	 par SET WINDOW sur le graphe en effectuant un DRAW MASK ou
	 un DRAW WINDOW. Il est possible de specifier l'ordonnee a
	 laquelle cet affichage va etre effectue.
	
	 voir aussi SETM => SET MASK	

SIGM

 SIGMA : variable globale du header ????

SINR

 SINH :
 SIN :	 voir COSR => COSH
		 => COS

SMOO

 SMOOTH :
	 On retrouve des types de lissage communs a SIR :
	 par defaut, lissage "hanning-smooth"
		 	 "boxcar-smoothing" ...

	 Le lissage est effectue sur le tableau R, ce dernier etant
	 prealablement copie dans le tableau T.

SOMM

 SUM :	 Integre les spectres dont les numeros sont dans le tableau
	 INDEX. Ces numeros sont definis par la fonction FIND qui
	 travaille sur les criteres de recherche qui lui sont imposes
	 par l'instruction SET.
	 Voir CRIT => SET et CIDX => FIND
	 SUM verifie la coherence des positions des spectres ainsi
	 que l'homogeneite des calibrations.		
	

SORT

 inexistant :
	 Il faut creer une procedure de tri. Les seuls tris efficaces
	 du marche etant bases sur des algorithmes recursifs, il sera
	 difficile d'obtenir un tri rapide a partir d'une procedure
	 CLASS puisque la recursivite y est interdite.

SQRT

 SQRT :	Meme fonction que dans SIR. Elle retourne la racine carre de
	 la valeur qui lui est passe en argument.

	 ex :	 DEFINE INTEGER A
		 DEFINE REAL B
		 LET A = 5
		 LET B = SQRT(A)

STOP

 EXIT :	Instruction de terminaison du programme CLASS.

SUBT

 "-" :	 Pour effectuer une soustraction, utiliser l'operateur
	 mathematique classique "-".
	
	 ex :	 DEFINE INTEGER A
		 DEFINE REAL B C
		 LET A = 3
		 LET B = 2.5
		 LET C = (A-B)

TYPE

 SAY :	 voir MESS => SAY

VISM

 SHOW MASK :
	 visualise a l'ecran les masque actuellement definis.

WRIT

 WRITE :Ecrit le spectre actuellement dans le tableau R dans le
	 fichier de sortie (determine par FILE OUT nom_fic).
	 Si le numero du spectre existe deja, une nouvelle version
	 est cree, laissant intact la version precedente.
	 Sinon un nouveau spectre est cree dans ce fichier.

	 L'instruction UPDATE permet d'ecraser un spectre apres
	 modifications. Le spectre de depart est efface puisque le
	 nouveau le remplace avec toutefois l'incrementation du
	 numero de version.

	 ex :	 FILE BOTH toto.nan	 ! en entree et en sortie
		 FIND/ALL
		 GET FIRST
		 SET UNIT C
		 KILL 100
		 WRITE		

ecrit les modifications dans une nouvelle entree du fichier resultat
qui sera placee a la fin.

		 FILE IN toto.nan
		 FILE OUT essai.nan NEW
		 FIND/ALL
		 GET FIRST
		 WRITE		

si "FIRST" n'existe pas dans essai.nan, il sera cree.

		 FILE BOTH toto.nan
		 FIND/ALL
		 GET FIRST
		 UPDATE

On ecrase le spectre designe par FIRST. A l'issue de l'UPDATE, il
n'y aura pas de spectre en plus dans le fichier mais le numero de
version de "FIRST" aura ete incremente quand meme.
		

WTSY

 inexistant :
	 voir RDSY => inexistant

	 INSTRUCTIONS CLASS N'AYANT PAS D'EQUIVALENT DANS SIR.	

beaucoup d'instructions de CLASS ne possedent pas d'equivalent
sous SIR, soit parce que le concept n'existe pas (par exemple
les nombreuses manipulations graphiques de CLASS) soit parce que
CLASS offre une fonctionnalite de plus dans un domaine tout de
meme present dans SIR.
Les instructions suivantes presentes les "inovations" les plus
importantes.

La notion de type de variables :

Chaque variable SIC (et donc CLASS) possede un type c'est a
dire qu'on lui attribue, des sa creation, un domaine d'existance
en terme de valeurs. Une variable de type INTEGER ne pourra
contenir que des valeurs entieres, le type CHARACTER n'acceptera
que des valeurs alphanumeriques, etc...
On rencontre ainsi des INTEGER, CHARACTER, REAL, LOGICAL.
On peut evoquer ici la possibiliter de declarer une fonction
de la meme maniere qu'une variable. Cela a ete discute dans
la comparaison ci-dessus : EVAL => inexistant.

Manipulations graphiques :

Ce domaine est plus riche dans CLASS que dans SIR et apporte
donc beaucoup de nouveautes.

DRAW TEXT :

Afficher du texte sur un graphique a une position determinee
par ses coordonnees en centimetres.

BOX, SPECTRUM, TITLE :
CLEAR SEGMENT:
CHANGE VISIBILITY segname OFF:

On peut afficher uniquement certaines portions d'un graphique,
c'est a dire la fenetre et ses axes gradues, le spectre,
son titre. Ces elements sont appeles par CLASS des segments.
Le segment le dernier afficher peut etre effacer par
CLEAR SEGMENT et ZOOM REFRESH. Cela n'est valable que pour
la derniere operation graphique (principe des piles Last In
First Out). Si l'on souhaite effacer un segment qui n'est pas
le dernier on peut avoir recours a CHANGE VISIBILITY spectrum
OFF puis ZOOM REFRESH.

SET BOX_LOCATION :

Determine les positions d'une boite destinee a contenir un
spectre. On peut ainsi afficher autant de boites que l'on veut
aux emplacements que l'on desire. La commande SPECTRUM dessinera
le spectre dans la derniere boite definie mais rien n'empeche
de reiterer la commande SET BOX_LOCATION sur une position deja
existante pour en effacer le spectre ou en mettre un nouveau.

CREATE DIRECTORY :
CHANGE DIRECTORY :
CREATE WINDOW :
CLEAR TREE, WINDOW, WHOLE :

Il est possible d'utiliser plusieurs fenetres (au sens X11) en
meme temps dans CLASS. L'existance de ces fenetres est construite
sous forme d'arbres. CREATE DIRECTORY permet de creer une nouvelle
instance de la classe fenetre, identiques a la fenetre par defaut
ouverte par DEVICE XAUTO. Pour aller travailler dans cette fenetre
il faut changer de repertoire (CHANGE DIRECTORY).
On peut egalement creer des fenetres de taille definie grace a
CREATE WINDOW. CLEAR TREE, WINDOW, WHOLE efface l'arborescence des
fenetres, une fenetre ou la totalite de la structure de description.
"

M.a.j. le 14 fevrier 2002 - J.M. Martin

Documents de travail :

1. Publication JPL 86-2 (15/12/1985) : format FITS pour IHW.
2. FITS user's guide : ftp://nssdc.gsfc.nasa.gov/pub/fits (v. recente, mot de passe (!)), ou plutot

http://fits.gsfc.nasa.gov/fits_home.html.
3. Documentation sur le serveur http://www.cv.nrao.edu/fits.
4. Ce qui se passe a Green Bank : - pour les donnees du 140 pieds,
et les documents du GBT
en ligne.
5. Un exemple de lecture de fichier
FITS avec CLASS (P.Colom).

Les buts :

Pouvoir exporter les données au format FITS, à partir du logiciel
spécifique 'RT' de pré-traitement des
données, et si possible à
partir des données brutes via un programme de conversion.
Le format FITS utilise doit être reconnu par les logiciels étrangers :

1. AIPS++ le nouveau logiciel du GBT et de Parkes,
2. CLASS, le logiciel développé
à l'IRAM et à l'Observatoire de Grenoble.

ftp://nssdc.gsfc.nasa.gov/pub/fits
http://fits.gsfc.nasa.gov/fits_home.html
http://www.cv.nrao.edu/fits
http://info.gb.nrao.edu/GBT/DA/140fits.html#FITS
http://info.gb.nrao.edu/GBT/DA/GBTda.html
http://aips2.nrao.edu/weekly/docs/aips++.html
http://iram.fr/GS/gildas.html

FITS
 CFITS cookbook P.Colom November 24, 1997

J.M.Martin January 13, 2004

CFITS is a tool that permits format translation between FITS format and CLASS
format. It is part of the GILDAS package.

1) to export a CLASS file toward FITS format.
 CFITS> file in toto.30m ! toto.30m is a CLASS binary file
 CFITS> find/all ! find all spectra
 CFITS> get f ! get first spectrum
 CFITS> fits\write toto.fits ! writes in FITS format (in toto.fits)

2) to import a FITS file toward CLASS format.
 CFITS> read toto.fits ! reads a FITS format file
 CFITS> file out toto.30m new ! creates a new CLASS file (empty)
 CFITS> las\write ! writes in CLASS format (in toto.30m)

3) when there are many FITS files to import (all located in the same folder),
 one should create a CFITS procedure with the following shell script:

echo "file out data.nrt new" > fits2class.pro
ls -1 foldername | awk '$1 ~ /.fits/ {print "read",$1,"\nlas\\write"}' >> fits2class.pro
echo "" >> fits2class.pro
chmod u+x fits2class.pro

remarks:
1) in order to obtain a summary of the CFITS commands:
 CFITS> help fits\

2) There are a few commands that pertain to both LAS and CFITS. To distinguish
them, you must to precise the langage. Example:
 CFITS> las\write ! to write in CLASS format
 CFITS> fits\write ! to write in FITS format

Last modification: January 13th, 2004. P. Colom, J.-M. Martin. W3 validator

Listing of the stokes.class procedure
! stokes.class
!
! written by : P. Colom, with help from Eric Gérard
! Feb. 2008
! aims: stokes parameters, linear polarisation parameter, PA, (U/Q)
!
! you need 2 scans: first with 0 and 90 deg (Rmer = -45)
! second +45 -45 (Rmer = 0)
!
! to fit a baseline, you need to mask the line and the spectrum start/end
! channels
define character outfile*20, infile*20
define integer first_scan last_scan
define real Vel_start Vel_end Vmin Vmax
!
GREG1\SET /DEFAULT
GREG1\PENCIL /DEFAULT
say "input file (MAX 20 char) ? "
let infile =
say "output file (MAX 20 char, new name) ? "
let outfile =
!
file in 'infile'
file out 'outfile' new
!
say "first scan (0°,90°) :"
let first_scan =
say "last scan (+45°,-45°) :"
let last_scan =
!
set scan first_scan first_scan ! angles : first, second = 0, 90°
find /all
list
set format brief ! brief header for plot
set weigh equal ! equal weight for sum or accu
get f
! define dimension of angle psi
define real psi[channels]
plot
get n
plot
accu ! Stokes I
plot
say " eliminate spectrum start/end channels : Vel_start and Vel_end"
let Vel_start =
let Vel_end =
say " baseline fit : you need to mask the line between Vmin & Vmax"
let Vmin =
let Vmax =
!
set mode x Vel_start Vel_end ! eliminates channels at both ends
set window Vmin Vmax ! masks the line
base 2 /plot ! second order polynomial fit
! pause " Stokes I -- type cont to go ahead"
!
memorize I1
get f
get n
multiply -1
accu ! Stokes Q
plot
base 2 /plot
memorize SQ
! pause " Stokes Q -- type cont to go ahead"
get n ! LCP
get n ! RCP
multiply -1
accu ! Stokes V
plot
base 2 /plot
memorize V1
! pause " Stokes V -- type cont to go ahead"
! and now: rotation of feed horn by 45 deg
set scan last_scan last_scan ! angles : first, second = = +45, -45
find /all
list
get f
plot
get n
plot
accu ! Stokes I
plot

base 2 /plot
memorize I2
! pause " Stokes I -- type cont to go ahead"
get f
get n
multiply -1
accu ! Stokes U
plot
base 2 /plot
memorize SU
! pause " Stokes U -- type cont to go ahead"
get n ! LCP
get n ! RCP
multiply -1
accu ! Stokes V
plot
base 2 /plot
memorize V2
! pause " Stokes V -- type cont to go ahead"
!
! compute averages of I and V, and ratio U/Q
retrieve I1
retrieve I2
accu
mult 0.5
memorize SI ! Stokes I
plot
write
pause " average of Stokes I -- type cont to go ahead"
retrieve SQ
write
plot
pause " Stokes Q -- type cont to go ahead"
! degree of linear polarization
memorize Pl ! Q in Pl
retrieve Pl
let RY = RY*RY ! Q^2
memorize Pl
retrieve SU
let RY = RY*RY ! U^2
retrieve Pl
accu ! Q^2 + U^2
let RY = sqrt(RY)
retrieve SI
swap ! Exchange the contents of the R and T buffers
divide 0.5 ! sqrt(Q^2 + U^2) / I
memorize Pl
!
retrieve SQ
retrieve SU
write
plot
pause " Stokes U -- type cont to go ahead"
divide 0.5 ! divide U by Q (0.5 is a threshold, avoid /0)
plot
pause " U/Q -- type cont to go ahead"
!
psi = 0.5*atan(ry) ! position angle
psi = psi*180./pi
ry = psi
set mode y -90 90
plot
write
pause " psi = 1/2 arctan(U/Q) -- type cont to go ahead"
!
retrieve Pl
set mode y 0 1
plot
write
pause " degree of linear polarization -- type cont to go ahead"
!
retrieve V1
retrieve V2
accu
mult 0.5
set mode y total
plot
write
pause " average of Stokes V -- type cont to go ahead "
set scan * * ! release constraint on scan number
say " ---"
say " conclusion: we have written in " 'outfile'
say " 1) "
say " 2) Q "
say " 3) U "
say " 4) psi = 1/2 arctan(U/Q) "

say " 5) degree of linear polarization"
say " 6) "
say " -------------- end of stokes.class ----------------"

P. Colom - March 26, 2008

Listing of the abb.class procedure
symbol bank1 "las\set telescope NANCAYRT-B1" ! correlator banks
symbol bank2 "las\set telescope NANCAYRT-B2"
symbol bank3 "las\set telescope NANCAYRT-B3"
symbol bank4 "las\set telescope NANCAYRT-B4"
symbol bank5 "las\set telescope NANCAYRT-B5"
symbol bank6 "las\set telescope NANCAYRT-B6"
symbol bank7 "las\set telescope NANCAYRT-B7"
symbol bank8 "las\set telescope NANCAYRT-B8"
symbol fa "find /all"
symbol fi "file in spectra.nrt" ! Nancay Radio Telescope file
symbol gn "get next"
symbol gf "get first"
symbol mx "las\set mode x"
symbol my "las\set mode y"
symbol b0 "base 0 /plot"
symbol b1 "base 1 /plot"
symbol b2 "base 2 /plot"
symbol b3 "base 3 /plot"
symbol b4 "base 4 /plot"
symbol cp "clear plot"
symbol ca "clear alpha"
symbol nrt "las\set extension .nrt"
symbol pico "las\set extension .30m"
set plot histo
set format long
nrt ! default extension : NRT

PColom - April 30, 2002

	Data processing
	Data processing softwares: specific informations
	Comparaison SIR/CLASS (08/96)
	Format FITS - projet FORT, traitement de donnees
	CFITS cookbook
	Stokes
	CLASS abbreviations

